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Abstract 
Motivation: The 3D organization of the genome plays a crucial role in various biological processes. Hi-C technology is widely used to 
investigate chromosome structures by quantifying 3D proximity between genomic regions. While numerous computational tools exist 
for detecting differences in Hi-C data between conditions, a comprehensive review and benchmark comparing their effectiveness is 
lacking. Results: This study offers a comprehensive review and benchmark of 10 generic tools for differential analysis of Hi-C matrices 
at the interaction count level. The benchmark assesses the statistical methods, usability, and performance (in terms of precision 
and power) of these tools, using both real and simulated Hi-C data. Results reveal a striking variability in performance among the 
tools, highlighting the substantial impact of preprocessing filters and the difficulty all tools encounter in effectively controlling the 
false discovery rate across varying resolutions and chromosome sizes. Availability: The complete benchmark is available at https:// 
forgemia.inra.fr/scales/replication-chrocodiff using processed data deposited at https://doi.org/10.57745/LR0W9R. Contact: nathalie. 
vialaneix@inrae.fr 
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Introduction 
Chromosomes are highly compacted within the cell nucleus, 
resulting in the spatial proximity of linearly distant genomic 
positions [1]. Hi-C [2] is a widely used technology to profile the 
3D organization of the genome. It does so by estimating the 
spatial proximity between pairs of genomic positions through 
their frequency of interaction. The typical output of a Hi-C 
experiment, after preliminary data preprocessing, is usually 
summarized as a symmetric matrix of counts, where the entry 
(i, j) (or (j, i)) corresponds to the number of interactions registered 
during the Hi-C experiment between genomic regions (“bins”) i 
and j. Hi-C has been widely used to uncover structural genomic 
elements at different hierarchical levels, such as A/B chromatin 
compartments, TADs, and loops [1–3]. Many computational tools 
exist to call these structures from Hi-C data, with variable 
reliability however [4–6]. 

Changes in 3D structures have been implicated in gene expres-
sion, cell division, cell differentiation, developmental disorders, 
and cancers [7–9]. This underscores the need for reliable methods 
and tools to compare Hi-C data across different conditions. One 
approach to comparing Hi-C data is to compute a similarity score 
for a pair of matrices, either at the level of the entire matrix 
(matrix-level) or for specific genomic regions (bin-level). Gunsalus 
et al., 2023 [10] reviewed several methods for the pairwise com-
parison of Hi-C matrices, classifying them into three categories: 

basic methods, which directly compute a similarity score (e.g. a cor-
relation) between two matrices [11], map-informed methods, which 
first calculate a Hi-C-related metric along a 1D track for each 
matrix separately (e.g. directionality index) and then compare the 
resulting tracks [12], and feature-informed methods, which predict 
specific chromatin structures for each matrix (e.g. TAD bound-
aries or chromatin loops) before comparing the predictions [13]. 
While these methods offer various similarity or dissimilarity met-
rics, none provide statistical guarantees such as p-values. More-
over, they focus solely on pairwise matrix comparisons without 
incorporating biological replicates. 

Another approach to comparing Hi-C data is differential anal-
ysis. Instead of quantifying the overall similarity between two 
Hi-C matrices (one for each condition), differential analysis aims 
at identifying local differences with statistical guarantees, often 
leveraging biological replicates for each condition. Following the 
previous classification, some of the methods can be considered as 
map-informed, as they use 1D metrics to detect differential struc-
tures such as TAD boundaries [14, 15] or chromatin compartments 
[16] at the bin level. Other methods fall under the feature-informed 
category, aiming to identify differential TADs, for instance [17]. 
However, most tools for differential analysis of Hi-C data do not 
fit into these categories, as they test for differences at the level 
of the bin pair, focusing on interaction counts between genomic 
regions [18–25]. To our knowledge, these methods have not been
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extensively reviewed or benchmarked. A recent book chapter [26] 
describes a few (four) such methods. While it provides technical 
instructions on their use and visualization of results, it does not 
evaluate the quality of the results. 

To address this gap, we propose a comprehensive review of the 
following tools for the differential analysis of Hi-C data: ACCOST 
[18], CHESS [27], diffHic [19], FIND [20], HiCcompare [21], HiCDC-
Plus [22], multiHiCcompare [23], Selfish [24], and sslHiC [25]. We 
also considered a former version of HOMER (The version available 
and documented at http://homer.ucsd.edu/homer/interactions/.), 
which included a test to perform comparisons between two matri-
ces, although 3D structure changes are not the primary focus of 
that tool. Our review provides a detailed technical description 
of each tool, focusing on implementation aspects, usability, and 
scalability. We explain the differences between the statistical 
methods employed by these tools and analyze their expected 
impacts on the results. 

We also conducted two extensive benchmarks of the tools 
using real Hi-C data from the literature. The first benchmark 
used Hi-C data generated from a human tissue sample, with 
an artificially introduced ground truth to allow a quantitative 
evaluation of each tool’s precision and power. The second bench-
mark involved Hi-C data from a CTCF depletion study during 
mouse cell cycle progression, evaluating the biological relevance 
of each tool’s results by comparing them to findings from ChIP-
seq experiments. 

The article is organized as follows: The second section “Meth-
ods” reviews the statistical grounds of the different tools in a 
rigorous way. The third section “Implementation and usability” 
describes the technical aspects of the tools. The fourth section 
“Numerical experiments” introduces our benchmark protocol and 
the fifth section “Results” analyses the tools’ performances. 

Methods 
Methodological overview of the tools 
This article covers tools that all aim at answering the same 
question: given a set of n Hi-C matrices, M1, . . .  , Mn, belonging 
to K different groups of biological interest (that we will call “con-
ditions”), are we able to find bin pairs with significantly different 
interaction counts between conditions? While several descriptive 
metrics (such as correlation or other similarity measures) can 
be used for this purpose, we focus on approaches that provide 
statistical guarantees for identified bin pairs. Such approaches 
perform one statistical test for each bin pair. The result of each 
of these tests can be summarized by a p-value (or an adjusted p-
value), which quantifies the statistical evidence of a significant 
difference. 

The tools discussed in this article all have a common workflow 
(Fig. 1). In short, this workflow takes Hi-C matrices from different 
conditions and performs a statistical test, which results in a p-
value (or an adjusted p-value) for each bin pair. CHESS is the only 
tool that slightly differs from this description because it provides 
p-values for fixed-sized windows of the Hi-C matrix (and not for 
every bin pair; see Section “Methodological background of the 
tools”). 

As shown in Fig. 1, the Hi-C differential analysis workflow can 
be decomposed into four main steps: 

• filtering, which consists in removing bin pairs considered not 
relevant from the analysis in all Hi-C matrices; 

• normalization, which consists in making bin pairs in a matrix 
or bin pairs between different matrices more comparable; 

• model and p-value computation, which is the core of the statis-
tical analysis and performs a test on all remaining bin pairs, 
using normalized interaction values; 

• multiple testing correction, which aims at accounting for the fact 
that a large number of tests have been performed. 

Most tools operate at the chromosome level, detecting intra-
chromosomal (cis) differential interactions only. However, diffHic, 
HOMER, and  sslHiC can also detect inter-chromosomal (trans) 
interactions. 

The steps of the Hi-C differential analysis workflow and the 
various options used by different tools are described in detail in 
the sections below. Table 1 summarizes the main methodological 
characteristics of the tested tools in relation to the steps of this 
workflow. 

Filtering 
Several tools propose to remove some bin pairs before the analy-
sis. The rationale behind this step is that low quality bin pairs or 
bin pairs with low interaction counts have little (if any) chance to 
be identified as differential but increase the number of hypothesis 
tests that are performed. Including such bin pairs can affect 
the test power, due to stronger multiple testing correction (see 
corresponding section below for further details). Discarding bin 
pairs before the test (and independently from its result) is a 
standard way to reduce this impact [28, 29]. 

The most common filters used in Hi-C differential analyses are: 

• low count filtering (implemented in diffHic, HiCcompare, 
HiCDCPlus, multiHiCcompare, and  Selfish). These filters 
simply remove, from the analysis, bin pairs that have 
interaction counts below a certain threshold. This threshold 
is either user-defined (i.e. all bin pairs for which the average 
or total interaction counts across analyzed matrices is below 
the threshold as in diffHic, HiCcompare, multiHiCcompare, 
and Selfish) or data-driven (the threshold is obtained as 
an estimation of a “background signal” from the data as in 
diffHic and HiCDCPlus); 

• bin quality filtering (implemented in CHESS, ACCOST, and  
HiCDCPlus). These filters remove bin pairs including at least 
one bin with low mappability or, alternatively, bin pairs for 
which the interaction counts are below the expected (data-
driven) value considering the bin mappability and GC con-
tent. These filters require that mappability or GC content is 
provided for each bin. 

Additionally, Selfish allows to discard all bin pairs for which 
the genomic distance between the two bins is larger than a certain 
(user-defined) value, typically targeting bins with low interaction 
counts. Also, HiCcompare has an option to let users specify a set of 
bins that should not be considered in the analysis. Supplementary 
Table S1 summarizes the type of filters available in each 
tool. 

Normalization 
Hi-C matrix normalization is an important step of the workflow. 
It aims at removing technical or biological biases that can impede 
a fair comparison between bins or between matrices [30]. The 
main known biases that can affect Hi-C data analysis are scale dif-
ferences between matrices (e.g. due to differences in sequencing 
depths), scale differences between bins in a given matrix (e.g. due 
to differences in mappability), or effects of the genomic distance 
in interaction counts within a given matrix. In the current section,
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Figure 1. A schematic representation of the typical workflow for differential analysis of Hi-C matrices at the bin-pair (pixel) level. Input matrices from  
two conditions, with or without replicates, are first filtered and normalized (first two steps). Statistical tests are then conducted to generate raw p-values, 
which are subsequently adjusted for multiple testing correction (last two steps). Additionally, a (log) fold change matrix can be generated, representing 
the ratio of average interaction values between conditions for each bin pair (not shown). 

we discuss these biases, their impact on the analysis, and how the 
different tools address them. 

Differences in total interaction counts between matrices. Total 
interaction counts across all bin pairs can differ between matrices 
due to experimental factors, such as variations in sequencing 
depth or library complexity. To prevent false positive predictions 
that would incorrectly label bin pairs as “differential”, these tech-
nical artifacts must be accounted for, as commonly done in RNA-
seq [31] or ChIP-seq data [32, 33] differential analyses. 

The most straightforward method to correct this bias is the 
total sum scaling (TSS) that simply aligns the total counts of all 
matrices in the dataset (implemented in sslHiC and advised, but 
not implemented, in HiCcompare). However, this approach has 
been shown to be generally inefficient for sequencing data, as it 
is strongly influenced by large outlier counts [31]. 

Hence, the article of Lun & Smyth, 2016 [33] emphasizes the 
need for an adequate between-matrix normalization and pro-
poses the MA correction (correction of the trend in an MA plot, 
where the difference “M” between two or more matrices is dis-
played as a function of their average count “A”). This correc-
tion, performed by cyclic locally estimated scatterplot smoothing 
(LOESS), has been shown to be efficient for ChIP-seq data and 
robust to a large proportion of low counts. It is implemented in 
diffHic (and advised in FIND but not implemented). 

A more sophisticated alternative is used in HiCcompare and 
multiHiCcompare. The MA correction is replaced by an MD cor-
rection (where D stands for the genomic distance between bin 
pairs, instead of its average count). However, since A and D are 
strongly related in Hi-C matrices (the larger the distance between 
the two bins of a pair, the lower the count for this bin pair), both 
methods are expected to result in similar corrections. 

Finally, although this does not strictly aim at correcting differ-
ences in sequencing depths, sslHiC also implements a min/max 
normalization applied to log10-transformed matrices so as to 
make all counts in a given matrix lie between 0 and 1 (and thus 
be more comparable across matrices). 

Differences in total counts between bins within a given matrix. 
The total number of interactions assigned to a specific bin or 
over a given genomic region depends on local properties of the 
genomic sequence, such as GC content, mappability, or restriction 
site density [34]. Since the purpose of differential analysis is to 

compare bin pairs between matrices and not bin pairs within the 
same matrices, correcting for these biases is not strictly neces-
sary from a statistical perspective. However, several tools never-
theless recommend or implement methods for correcting these 
biases. 

Among the most popular methods for within-matrix normal-
ization, non-parametric methods do not explicitly use GC con-
tent or mappability values to remove biases between bin counts. 
On the contrary, similarly to TSS normalization, they align the 
observed total count across all bins of a given matrix. These 
include iterative correction and eigenvector decomposition (ICE) 
[35], implemented in HOMER, or Knight–Ruiz (KR) matrix balanc-
ing [36], implemented in diffHic. Other tools (FIND and Selfish) 
benefit from the juicer data format [37] and embed values that 
allow for KR correction. Finally, CHESS and HiCDCPlus recom-
mend the ICE correction but do not implement it. 

An alternative to choosing a specific method to correct 
between-bin biases is to let users provide bin-specific correction 
values. This is the course of action taken by ACCOST (that 
recommends using ICE but allows for any other type of bin 
correction values to be used). 

Finally, note that if all bin sums in a given matrix are aligned 
to the same total count B (e.g. B = 1 for KR correction), then it is 
sufficient to use the same B for all matrices to align, at the same 
time, overall total interaction counts between matrices. 

Genomic distance related differences between interaction 
counts within a given matrix. Hi-C matrices are strongly 
structured with respect to the genomic distance between bin 
pairs. Likewise biases between bin total counts within a given 
matrix, this bias does not necessarily require correction but is 
nevertheless accounted for in several tools. 

One of the most popular approach to correct for this bias is 
to compute an “observed over expected” matrix. The interaction 
count of a bin pair is divided by the average interaction counts 
of all bin pairs with the same genomic distance. This approach 
is implemented in CHESS. Similarly, the interaction count of a bin 
pair at the same genomic distance can be centered and reduced to 
unit variance (as implemented in Selfish) or scaling factors for bin 
pairs at the same genomic distance (e.g. median) can be computed 
and used for normalization (as implemented in ACCOST and 
HiCDCPlus).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/2/bbaf074/8051526 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 16 M

arch 2025



4 | Jorge et al.

Ta
b

le
 1

. 
M

et
h

od
ol

og
ic

al
 d

es
cr

ip
ti

on
 o

f t
h

e 
to

ol
s 

(s
u

m
m

ar
iz

ed
; f

or
 fu

rt
h

er
 d

et
ai

ls
 s

ee
 th

e 
te

xt
) 

Pr
ep

ro
ce

ss
in

g
M

od
el

p
-v

al
u

es
 

To
ol

Fi
lt

er
in

g
N

or
m

al
iz

at
io

n
 

D
at

a 
d

is
tr

ib
u

ti
on

 
as

su
m

p
ti

on
 

Le
ve

ra
ge

s 
re

p
li

ca
te

s 
2D

-a
w

ar
e 

ap
p

ro
ac

h
 

A
ll

ow
s 

co
va

ri
at

es
 o

r 
K

 >
 2

 c
on

d
it

io
n

s 
Ty

p
e 

of
 

m
od

el
/t

es
t 

Pr
ov

id
es

 r
aw

 
p-

va
lu

es
 

p-
va

lu
e 

co
rr

ec
ti

on
 

A
C

C
O

S
T

B
in

 q
u

al
it

y
(I

C
E)

N
B

�
×

×
ex

ac
t t

es
t

�
(B

H
) 

C
H

ES
S

B
in

 q
u

al
it

y
(I

C
E)

N
on

e
×

�
×

SS
IM

�
× 

d
if

fH
ic

Lo
w

 c
ou

n
ts

M
A

, K
R

N
B

�
×

�
G

LM
�

B
H

 
FI

N
D

×
(M

A
),

 K
R

SP
P

�
�

×
ex

ac
t t

es
t

×
B

H
 b

y 
d

is
ta

n
ce

 
H

iC
co

m
p

ar
e

U
se

r-
d

ef
in

ed
T

SS
, M

D
N

on
e

×
×

×
Z

-s
co

re
�

B
H

 b
y 

d
is

ta
n

ce
 

H
iC

D
C

Pl
u

s
Lo

w
 c

ou
n

ts
, b

in
 q

u
al

it
y

(I
C

E)
N

B
�

×
×

ex
ac

t t
es

t
�

B
H

 
H

O
M

ER
×

IC
E

N
B

�
×

×
G

LM
�

B
H

 
m

u
lt

iH
iC

co
m

p
ar

e
Lo

w
 c

ou
n

ts
M

D
N

B
�

×
�

G
LM

�
B

H
 b

y 
d

is
ta

n
ce

 
S

el
fi

sh
Lo

w
 c

ou
n

ts
, d

is
ta

n
ce

K
R

N
on

e
×

�
×

Z
-s

co
re

×
B

H
 

ss
lH

iC
×

T
SS

, m
in

/m
ax

N
on

e
×

�
×

G
N

N
×

B
H

 

IC
E:

 it
er

at
iv

e 
co

rr
ec

ti
on

 a
n

d
 e

ig
en

ve
ct

or
 d

ec
om

p
os

it
io

n
; K

R
: K

n
ig

h
t–

R
u

iz
; N

B
: n

eg
at

iv
e 

bi
n

om
ia

l; 
SP

P:
 s

p
at

ia
l P

oi
ss

on
 p

ro
ce

ss
; S

SI
M

: s
tr

u
ct

u
re

d
 s

im
il

ar
it

y 
in

d
ex

; G
LM

: g
en

er
al

iz
ed

 li
n

ea
r 

m
od

el
; G

N
N

: g
ra

p
h

 n
eu

ra
l 

n
et

w
or

k;
 B

H
: B

en
ja

m
in

i–
H

oc
h

be
rg

. I
te

m
s 

be
tw

ee
n

 p
ar

en
th

es
es

 c
or

re
sp

on
d

 to
 s

te
p

s 
ad

vi
se

d
 b

y 
th

e 
m

et
h

od
 a

u
th

or
s 

bu
t n

ot
 im

p
le

m
en

te
d

 in
 th

ei
r 

to
ol

 

Other normalizations. 
Other methods designed to correct various other biases are also 
implemented: diffHic proposes a method based on DNA copy 
number variation (CNV) estimation to correct for this bias. How-
ever, as discussed by Servant et al., 2018 [38], CNV could be of 
interest in cancer studies and it is therefore not necessarily sound 
to always use this correction. 

Finally, note that all tools that use the genomic distance 
between bins for the normalization are restricted to detect 
intra-chromosomal (cis) differential interactions only and cannot 
consider inter-chromosomal (trans) interactions. 

Supplementary Table S2 summarizes the different normaliza-
tion options offered by the tools. 

Methodological background of the tools 
This section describes the methodological premises and solutions 
of the different tools. The tools can be classified according to the 
following two questions: 

• Can the tool use biological replicates to perform the test (i.e. 
handle more than one matrix in each condition)? When 
biological replicates are available, it is still possible to use a 
tool designed to only compare one matrix in each condition 
by merging (computing the sum of) the replicates of each 
condition. However, it is strongly advised, from a statistical 
perspective, that these replicates are used in order to relate 
the inter-condition variability to the intra-condition variabil-
ity. 

• Does the tool consider interaction counts as independent 
from each other, or does it try to take advantage of the fact 
that two bin pairs, (i, j) and (i′, j′) in the matrix, tend to have 
more similar interaction counts when they are close to each 
other (e.g. |i − i′| + |j − j′| is “small”)? We will use the term “2D-
agnostic” for the tools that consider bin pairs independent 
and the term “2D-aware” for the tools that account for this 
property. 

These two typology levels for the tools are provided in the two 
columns of Table 1 named “use of replicates” and “2D-aware”. We 
now give a brief overview of each tool based on the answer to these 
two questions. 

Comparison of two matrices 
The tools designed to perform differential analysis between two 
matrices are: HiCcompare (2D-agnostic), CHESS, Selfish, and  ssl-
HiC (2D-aware). 

2D-agnostic method. A 2D-agnostic method means that a mea-
sure of the difference between the two matrices is obtained at 
bin pair level and transformed into a Z score, from which a p-
value is derived using the Gaussian distribution. More precisely, 
HiCcompare uses the M-value (log-fold change between the two 
matrices) of the interaction count to obtain a Z score. 

2D-aware methods. Existing 2D-aware methods that perform 
tests between two matrices are based on different premises: 
CHESS first partitions the Hi-C matrix into fixed-size square 
submatrices and computes a structural similarity index (SSIM). 
This index is commonly used in imaging analysis to quantify the 
similarity between two matrices. It depends on the average signal 
in each submatrix, the variance of the signal in a given submatrix, 
and the signal correlation between the two submatrices. A p-value 
is then derived for each square from this index, quantifying the 
exceptionality of the observed index with respect to a background 
model.
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Selfish performs a sort of “local smoothing” of the matrices: 
For each bin pair, it applies Gaussian filters centered at the bin 
pair, with increasing radius. The idea is to take advantage of 
the spatial self-similarity in contact maps to improve statistical 
evidence. Differences of the Gaussian filter evolutions between 
the two matrices are then assumed to be Gaussian, from which a 
p-value is derived for each radius. The final p-value is defined as 
the minimum radius-specific p-value across radii. However, since 
no multiple testing correction is applied at this stage, the resulting 
p-values are invalid. 

Finally, sslHiC is based on a graph neural network (GNN) [39, 
40]. The idea is to represent a Hi-C matrix as a graph in which 
bins are nodes and positive interaction counts are edges (weighted 
by the interaction count). Bin pairs of the form (i, i + 1) (linking 
two bins that are neighbors on the chromatin) are also linked 
with an edge to encode the genome structure in the Hi-C graph. 
The authors propose a new architecture of GNN, which they call 
“edge-enhanced GNN” (EEGNN) that aims at better exploiting the 
information carried by edges in the message passing process of 
the GNN. Using this architecture, all the bin pairs (i, j) in the 
matrix are represented by their embeddings hk 

(i,j), d-dimensional 
vectors organized in different layers, k. The method is fully aware 
of the whole matrix since the embedding hk 

(i,j) at layer k is passed 
to the other bin pairs that share a common node to compute 
their embeddings at layer k + 1. The method finally derives a p-
value for (i, j) by assuming Gaussian distribution of the Euclidean 
distance between embeddings hK 

(i,j) of the two matrices in the last 
layer K. 

Comparison of multiple matrices for each condition. 
Tools that leverage replicates to perform differential analysis 
are ACCOST, diffHic, HiCDCPlus, HOMER, multiHiCcompare (2D-
agnostic), and FIND (2D-aware). As explained above, an important 
advantage of these tools from a statistical perspective is that 
they can account for the variability across replicates within each 
condition (e.g. by computing variances, which cannot be done 
when a single replicate is available). 

2D-agnostic methods. 2D-agnostic tools that account for repli-
cates (ACCOST, diffHic, HiCDCPlus, HOMER, and  multiHiCcom-
pare) all assume that the interaction counts follow a negative 
binomial (NB) distribution. This is a standard hypothesis already 
used in other differential analysis methods for sequencing data, 
notably for RNA-seq. More precisely, diffHic and multiHiCcom-
pare integrate edgeR [41] functions that fit a NB generalized linear 
model (GLM) (and thus directly benefit from the flexibility of this 
framework, able to account for complex experimental designs). 
The main difference with the standard RNA-seq pipelines is the 
addition of an offset derived from the MA (diffHic) or MD (multi-
HiCcompare) normalization in the NB GLM. Similarly, HiCDCPlus 
and HOMER use DESeq2 [42] and differ from DESeq2 by the 
preprocessing performed on Hi-C matrices, especially the filtering 
step described in the “Filtering” section. Alternatively, HOMER can 
also use an edgeR model. Even if it does not directly depend 
on DESeq2, ACCOST also derives its method from DESeq2’s NB 
model, plugging the bin-specific correction values described in 
“Normalization” into the NB GLM method of DESeq2. 

2D-aware method. The only 2D-aware tool able to account for 
replicates is FIND. In  FIND, a bin pair is described by its posi-
tion (i, j) in the matrix 2D structure and its interaction counts 
across matrices. The resulting triplet is distributed as a spatial 
Poisson process (a count process that has a spatial structure) 
with condition-specific intensity parameter λ1 and λ2. A first-level 

p-value for the test of the null hypothesis λ1 = λ2 is then obtained 
for each bin pair. The final p-value at each bin pair is obtained 
by aggregating the first-level p-values in the local neighborhood 
around the bin pair, using the r-ordered p-value (rOP) method 
[43]. However, the resulting p-value may not be valid since the 
rOP method assumes independence between the hypotheses to 
be aggregated. 

Multiple testing correction 
All the evaluated tools perform one statistical test for each bin 
pair (i, j), with  FIND and Selfish deriving this p-value by aggre-
gating results from other previous tests. Therefore, a multiple 
testing correction is necessary to control false positives–bin pairs 
identified as differential by chance rather than due to a true dif-
ference in interaction levels between the two conditions. Multiple 
tests in genomic studies are generally handled by controlling the 
false discovery rate (FDR). The FDR corresponds to the expected 
proportion of false positives among the bin pairs called significant 
by a given method. The state-of-the art method for FDR control is 
the Benjamini–Hochberg (BH) method [44]. 

However, multiple testing correction is handled in different 
ways across tools. diffHic, HiCDCPlus, HOMER, and sslHiC imple-
ment FDR control using the BH method. While ACCOST does 
not directly provide multiple testing correction, its authors also 
used the BH method in [18]. A different strategy is implemented 
in HiCcompare, multiHiCcompare, and  FIND. These  methods  
perform multiple testing correction on a per-distance basis, also 
using the BH method. This implies that the FDR of their results 
is (theoretically) not globally controlled at the chromosome level, 
which means that more false positives can be expected for these 
tools. Notably, as the typical use case of the tools considers indi-
vidual chromosomes, looking for differences in cis-interactions, 
multiple testing correction is not performed by these methods at 
the genome-level. 

Handling more complex experimental designs 
Finally, diffHic and multiHiCcompare are designed to perform a 
test between more than K = 2 conditions or are able to include 
external covariates in the model. The latter is useful when an 
experimental factor is not of primary interest for the differential 
analysis but might influence the results (e.g. a noise effect, like 
the sex or the tissue, could mask the differences due to the factor 
of interest, like the treatment). In this case, it is common practice 
to account for this covariate as a “blocking factor,” correcting the 
effect without testing for it. However, due to the high cost of Hi-C 
data generation, such complex designs (involving more than two 
conditions and/or covariates) remain rare. As a result, while these 
features may be valuable for future experimental designs, they 
are not the primary focus at present. 

Implementation and usability of the tools 
Table 2 summarizes technical information for each tool, including 
the programming language, whether the tool is packaged and easy 
to install, which input formats are handled, whether a documen-
tation is provided, and when it has been last updated. 

Inputs and input formats 
Almost all the tested tools assume that the raw sequencing 
reads have preliminary been processed with a Hi-C data analysis 
pipeline and consequently converted into interaction matrices. 
Notable exceptions are diffHic, which can also handle BAM or 
FASTQ files, and HOMER, which requires BAM or FASTQ files.
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During the construction of the interaction matrix, paired-end 
reads are usually mapped to a genomic reference sequence. Chro-
mosomes are then discretized into fixed-size bins, and interaction 
matrices are obtained by counting for each bin pair the number of 
read pairs that link the corresponding bins. In short, interaction 
matrices are essentially symmetric square matrices with non-
negative entries and many zeros. 

Several file formats have been proposed to store these matrices, 
with different degrees of adoption. Although none of them has 
become the universal standard yet, a few are used by several tools. 
Such common formats include binary (and possibly compressed) 
formats, like the .hic [37], .cool, .mcool [45] and  .fanc [46] 
formats, and text-based formats like the HiC-PRO [47] or BEDPE 
[48] formats. A majority of the tested tools (namely CHESS, FIND, 
HiCcompare, multiHiCcompare, Selfish, and  sslHiC) use  these  
standard formats (Table 2). Note that sslHiC can take as input a 
.cool file or a contact matrix file similar to the one generated 
by HiC-PRO. In the latter case, unlike the other tools, it does not 
require an index file but only the matrix resolution (only certain 
resolutions are allowed; see Methods). The matrix file is then given 
as an .mtx file in the Matrix Market format, or can directly be 
passed as a binary Python/numpy file (.npy or .npz). 

The other tools use more specific formats. For instance, 
ACCOST requires a tab-delimited format file, with columns 
<chr1> <mid1> <chr2> <mid2> <#reads>, where  midi is 
the position of the middle of bin i (i = 1, 2), and #reads is the raw 
interaction count. HiCDCPlus and diffHic use the GInteractions 
Bioconductor class [49] as input format. HOMER is the only tool 
in the list that exclusively accepts raw reads as input, rather than 
interaction matrices. As a result, users must map the data with 
HOMER, making it incompatible with pre-existing matrices for 
differential analysis. 

Furthermore, some tools require additional data with the 
interaction counts. ACCOST requires a bin-specific normalization 
score for each bin, which can be obtained with the ICE method 
[35], as implemented, e.g. in Bioconductor/HiC-PRO package [47] 
or in Cooler [45]. Note that ACCOST can accommodate any 
possible bin-specific bias as input, allowing to use parametric 
methods based on GC content, mappability, or restriction site 
density, as long as they provide a score for each bin. Additionally, 
ACCOST requires a mappability score for each bin, but this 
information is only used to discard some bins from the analysis. 

Likewise, HiCDCPlus requires GC content information, but 
the tool can compute it internally as long as the corresponding 
genome is available from Bioconductor [50]. Optionally, map-
pability information can also be provided. In contrast to other 
tools, CHESS performs a test and derives a p-value only if a set 
of background regions, where no difference is expected between 
the two matrices, is provided. Otherwise, CHESS only computes 
similarity scores between the matrices and does not return a 
p-value. 

Finally, some of the tools contain format converters, like HiC-
compare and multiHiCcompare that provide functions to convert 
.hic and .cool files to their own internal format. 

Of note, sslHiC is the only tool that restricts the bin size. 
Namely, it can only analyze Hi-C matrices at resolutions 10, 50, or 
500 kb, because the authors trained their deep-learning models 
for these resolutions only. 

Programming languages and packaging 
Most of the tools reviewed are implemented in Python and/or 
R (Table 2), with the exception of HOMER. From a user perspec-
tive, availability through a package management system (like
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pip, conda, or the CRAN repository) is highly valuable because 
dependencies are usually handled during the installation process, 
making it much easier to install compared to non-packaged tools. 
Bioconductor packaging [50] offers additional stability for several 
reasons: the code is extensively reviewed before acceptance, every 
release is tested on the three main operating systems, and exten-
sive documentation is required (including a use case vignette). 
Python packages often rely on an external documentation web-
site, which can be extensive and detailed (such as the ones hosted 
on the “Read the Docs” documentation service https://about. 
readthedocs.com/). 

From this point of view, the R/Bioconductor packages diffHic, 
HiCcompare, HiCDCPlus, and  multiHiCcompare are easy to 
install, thanks to the Bioconductor common installation process. 
FIND is also easy to install, even if not included in an official 
package repository. 

Similarly, for Python tools, CHESS and Selfish are easy to 
install, thanks to pip. In addition, Selfish also proposes an 
installation process via a Docker or a Singularity/Apptainer 
container, providing further reproducibility and robustness. In 
contrast, ACCOST does not offer a pip installation and is just 
provided as Python scripts. For ACCOST, the authors simply 
mention its dependency with Python 2.7 and R,  as well as with  
numpy, scipy, and  some  scikit-learn libraries. In contrast, sslHiC 
is easier to use thanks to a provided conda environment setting 
file. HOMER includes a script, which installs and configures 
the tool. A description of the documentation of the tools, 
together with their comprehensivenesses and readabilites, and a 
description of issues encountered during installation of the tools 
are provided as Supplementary Sections 3.1 and 3.2, respectively. 

Illustrative datasets 
In addition, having some data included in the tool for illustration 
is usually appreciated by users. From this perspective, HOMER 
and Selfish do not include any dataset. diffHic includes a small 
BAM file used in its manual, while its vignette features three 
external datasets also mentioned in their article. FIND, HiCcom-
pare, HiCDCPlus, and  sslHiC include (part of) the processed data 
from [3] (GEO: GSE12878), which they used in their documentation 
and also (except for FIND) in the results of the article. ACCOST 
also includes part of the same dataset but does not use it in 
the HTML manual for illustration (this dataset is discussed in 
their article, however). sslHiC also includes datasets simulated 
from chromosome 21 of a GM12878 cell line dataset (the original 
dataset is only used to illustrate another feature of the tool on 
a replication measure). The simulated dataset consists in three 
couples of matrices including a certain percentage of simulated 
differential interactions with varying fold changes (2, 4, and  6). 
CHESS includes the processed data from [52] (ArrayExpress: E-
MTAB-5875) and multiHiCcompare part of the data from [53] 
(GEO: GSE104888). Both use these datasets in their documentation 
and article. 

Note that all datasets are not provided under the same format. 
ACCOST provides compressed .tsv files that correspond to their 
input format, CHESS and HiCDCPlus provide .hic files, FIND and 
HiCcompare embed data in their tool (they can then be loaded 
using the function data, directly properly formatted for usage in 
their functions or as GInteractions objects [49]). 

Numerical experiments 
In this section, we present the extensive numerical experiments 
that we performed to assess the statistical performance of the 

tools. In particular, we describe the datasets, the tools, and how we 
designed the tests to evaluate the Type-I error control, the power, 
and the biological relevance of the results. 

Tested tools 
Among the tools described in “Methods,” we excluded three tools 
from the simulation study: 

1) CHESS because it is made to provide p-values for fixed-
sized windows of the Hi-C matrix that “cannot be smaller 
than 20× the bin size of the data” (User documentation even 
recommends to use regions spanning at least 100× the bin 
size of the data.), which is hardly comparable with the other 
tools (that obtain results at a bin pair resolution); 

2) ACCOST because it is not actively maintained anymore (it 
resulted in errors with Python. We contacted the authors 
about this problem which they intend to solve); 

3) HOMER, which led to an error with our data. We contacted 
the authors about this problem without success. 

Supplementary Table S3 provides the link to the source code 
and the version or date at which it was accessed for installation. 

All tools were launched successfully for all experiments except 
for: 

• multiHiCcompare that filtered out all bin pairs in chr 21 
experiments with the semi-simulated dataset. All bin pairs 
were also filtered for chr 13, 14, and 15 of the CTCF depletion 
dataset. The tool was successful but no results were pro-
duced; 

• sslHiC that we could run only on 500 kb resolution matrices. 
The tool was successful for this setting but not designed for 
the other settings. 

Tool parameters 
These tools were tested with their default parameters whenever 
possible. The exceptions to this choice are listed in Supplementary 
Table S4 and correspond to parameters with no default but 
required by the tool to work, as for FIND. 

In addition, by default FIND filters out results for which the 
adjusted p-value was above a certain threshold. We turned this 
filter using qvalue = 1 to retrieve all results (Using this setting 
results in FIND returning adjusted p-values equal to one as zeros, 
which is not desirable. We manually corrected this setting in our 
code.). We also used the option to split the computation into 
several chunks (otherwise, using the tool resulted in memory 
overload). 

Similarly, diffHic provides several functions that can perform 
different types of filtering before the differential analysis. In our 
experiments, we did not filter out bin pairs with a low logCPM but 
we used their filterTrended filter. 

For a given experiment and tool, p-values were adjusted inde-
pendently for each chromosome. The BH procedure [44] was used 
to adjust p-values when the tool did not provide adjusted p-values. 
For tools that perform a per-distance-basis FDR correction (HiC-
compare and multiHiCcompare), we kept their adjusted p-values 
and also computed adjusted p-values at the chromosome level 
(“standard” BH procedure). In the Results section, these two types 
of results are identified by HiCcompare (original adjusted p-value 
of the tool) and HiCcompare-realFDR (re-computed adjusted p-
value). We were unable to perform this correction for Selfish, 
FIND, and  sslHiC, which, unfortunately, do not provide raw p-
values.
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Figure 2. Design of the simulations. (a) The available matrices used for the numerical experiments consist in five technical replicates from three 
chromosomes (1, 7, and 21) generated at three different resolutions (200 kb, 500 kb, 1 Mb). Numbers at the bottom row correspond to genomic positions 
(in Mb), indicating the size of these matrices. (b) Illustration of the simulation process for Type-I error assessment (H1 setting, top right) and assessment of 
false positive rate (FPR) and true positive rate (TPR) (H0 setting, bottom left). Type-I error control was assessed by splitting technical replicates randomly 
into two groups, while FPR and TPR were assessed by generating artificial true positive examples where read counts are increased in a target zone by 
adding resampled Hi-C data from the remaining technical replicate. 

Semi-simulated data study 
We first used a use case where the ground truth of difference loca-
tions is precisely controlled. One possibility to do this would have 
been to rely on a simulation study, generating data from a specific 
probability distribution. A natural choice for this distribution 
would be the NB model, since a number of differential analysis 
tools rely on this distribution (diffHic, HiCDCPlus, multiHiCcom-
pare, and  ACCOST). However, the evaluation process would have 
then been biased in favor of these tools. More generally, any choice 
of a particular distribution induces biases since the true data 
generating distribution is unknown. 

We therefore used semi-simulated data coming from real Hi-
C data. This type of approach has previously been applied mul-
tiple times to benchmark tools for, e.g. RNA-seq data [54–56]. 
More specifically, we used an ENCODE dataset [57] from a Hi-
C experiment performed on a human colon sample (experiment 
accession: ENCSR295BDK), that includes five technical replicates 
(sequencing runs). To obtain Hi-C matrices, raw sequencing reads 
of each technical replicate were processed using the nf-core/hic 
pipeline [58] v1.2.2 on the assembly version GRCh38 of the human 
genome (see Supplementary Section 4.1 for further details). Hi-
C matrices at three different resolutions and for three different 
chromosomes were finally used, as shown in Fig. 2a. Processed 
data are available at https://doi.org/10.57745/LR0W9R. 

To assess the Type-I error control, we ran each tool on technical 
replicates randomly split into two groups, where no signal is 
expected. We also assessed the statistical power of the tests by 
creating a controlled difference in a given part of some matrices. 
Figure 2 illustrates (a) the data matrices used and (b) the test 
protocol. 

Type-I error control (H0 setting) 
The quality of statistical tests is usually assessed via their math-
ematical validity (proper control of the Type-I error, or false dis-
coveries) and by their performance (statistical power or ability to 
detect true positives). In this first simulation setting, we generated 
data under the null hypothesis (H0) in which no signal is expected, 
as described in Fig. 2b. 

For each chromosome, we assigned the five technical replicates 
to two conditions (three replicates in a condition and the other 
two in the other condition) and processed them with the six tools 
to extract p-values for differential interactions between the two 
conditions. The C3 

5 = 10 possible assignments of the replicates 
into two groups were obtained and considered as independent 
experiments (i.e. p-values were adjusted independently in each 
assignment and chromosome). 

For tools designed to compare only two matrices (one for each 
condition), i.e. HiCcompare and Selfish, we merged the replicates 
of the same condition into a single matrix before processing the 
two resulting matrices with the tool (Fig. 2b). Also, Selfish results 
were not symmetric (the p-value assigned to the bin pair (i, j) was 
not always equal to the p-value assigned to the pair (j, i) whereas 
the Hi-C matrix is symmetric by design and logFC were found 
identical between the two pairs). For instance, for simulation 6, 
chromosome 21, and resolution 1 Mb, Selfish returned a p-value 
of 0.9 for the pair (2810, 2805) and a p-value of 7.4e−4 for the pair 
(2805, 2810), as documented in our code repository). To address 
this, we arbitrarily kept one of the two p-values returned by the 
tool (the one corresponding to i < j). 

The total number of performed tests, the percentage of signifi-
cant results (based on p-values and adjusted p-values) at different 
risk levels as well as the empirical cumulative density function 
(ECDF) were obtained for each tool, chromosome, and resolution. 
Note that not all tools provided raw p-values. FIND, Selfish, 
and sslHiC only returned p-values adjusted for FDR control. For 
these tools, one can only verify that the average number of tests 
declared significant (at any target FDR level) is zero for a H0 

setting. 

Simulations with ground truth signal (H1 setting) 
The same dataset was used to generate pseudo-simulated exper-
iments corresponding to the existence of a region with a positive 
signal, as described in Fig. 2b. More specifically, the five technical 
replicates of each chromosome were used in the following way: 

• two replicates were used as the Hi-C matrices of the first 
condition; 
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Table 3. Total number of bin pairs (third column) and number of 
bin pairs in the target zone for the evaluation of true positive 
detection rates (fourth column; H 1 setting only), for each 
chromosome and resolution 

Chr. Resolution Total In target 

1 1 Mb 26 741 1275 
7 1 Mb 12 765 861 
21 1 Mb 861 45 
1 500 kb 105 231 5151 
7 500 kb 49 967 1888 
21 500 kb 3218 136 
1 200 kb 637 599 31 375 
7 200 kb 306 209 10 936 
21 200 kb 17 558 730 

Note that, due to filters in the tools, not all these bin pairs were actually 
tested for each method. 

• two other replicates were modified to be used as the Hi-C 
matrices of the second condition. We first selected a region, 
called “target zone”, and increased the counts of the matrices 
of the second condition in this region by adding the cor-
responding values from the fifth replicate. The target zone 
consisted of bin pairs where both bins were located within 
the 20th to 40th percentile range of chromosome length, 
with 0% representing the start of the chromosome and 100% 
representing the end. 

This simulation setting was designed to obtain a controlled dif-
ferential area in the matrix approximately mimicking a structure 
similar to a TAD. In particular, this setting should favor 2D-aware 
tools, e.g. tools that exploit the spatial autocorrelation of the 2D 
Hi-C matrix (FIND, Selfish, and  sslHiC). 

Finally, the four matrices (from two conditions) were processed 
as described in “Type-I error control (H0 setting)”, distinguishing 
results for the target zone from the others. The precision-recall 
(PR) curves based on adjusted p-value filtering were then obtained 
to simultaneously assess the precision (i.e. the ratio of bin pairs in 
the target zone among bin pairs declared positive) and the recall 
(i.e. the ratio of bin pairs declared positive among bin pairs in 
the target zone). Note that the recall is also named power in the 
framework of statistical tests and that “1− Precision” indicates if 
the test properly controls the FDR. 

Table 3 gives the total number of bin pairs for each chromo-
some and resolution, as well as the number of bin pairs in the 
target zone. 

CTCF depletion study 
To test the tools on a real life use case, we retrieved publicly 
available data from a CTCF depletion study in post-mitotic mouse 
cells [59]. This study features a Hi-C chromatin structure pro-
filing of a murine erythroblast cell line under two conditions: 
either under accute depletion of CTCF through an auxin-inducible 
degron system (CTCF- condition) or in the control condition with-
out auxin-induced depletion (CTCF+ condition). Hi-C libraries 
were generated, sequenced, and processed for three biological 
replicates per condition. We downloaded the six corresponding 
interaction matrices (GEO Accession GSE168251) and ran all the 
tools on each autosome independently at the resolution of 100 kb. 

Although no precise and exhaustive ground truth exists for 
such a real case dataset, it is well known that the CTCF protein 
plays a major role in chromatin loop and TAD boundary forma-
tion. As reported in the original study, many structural differences 
are therefore expected between the two conditions, involving in 

Figure 3. Average percentage of performed tests (across the 10 repeats) 
compared to the number of bin pairs passed as input to the tool (given in 
Table 3) across chromosomes and resolutions (200kb, 500kb, and 1Mb) in 
the H0 setting. sslHiC could only be used on 500 kb resolution data. 

particular genomic regions with a high density of active CTCF 
binding sites [ 59]. In order to assess the biological consistency 
of the predicted differential interactions, we compared the corre-
sponding genomic positions with those of the active CTCF binding 
sites that were profiled by ChIP-seq experiments on the same cell 
line (GEO ACCESSION GSE129997, [60]). More precisely, for each 
100 kb bin of the genome, we both computed: 

• the number of times this bin was included in a bin pair found 
significantly different by the tool; 

• the number of CTCF active sites (called peaks) present in this 
bin pair. 

The joint distribution of these two quantities was thus 
obtained, and the Spearman correlation was computed to assess 
the general biological consistency of each tool’s results. 

Computational time 
All tools were tested on the same infrastructure (Genotoul-Bioinfo 
cluster) on a single CPU node, except for sslHiC that was tested 
on a different node because it required GPU. For comparison 
purposes, we ran the tools on one processor only and recorded 
computational times in the H1 setting and for the CTCF depletion 
study. 

Processed data as used in the numerical experiments along 
with scripts implementing the different tools and performing 
the result analysis are made available at https://forgemia.inra.fr/ 
scales/replication-chrocodiff. 

Results 
Number of tested bin pairs 
We used the H0 setting to assess the differences in the number of 
bin pairs filtered before the test procedure by the different tools. 
Figure 3 provides the proportion of tests performed for each tool 
in the H0 setting (relative to the maximum number of possible 
tests, as given in Table 3 for each chromosome and resolution). 
The difference in the numbers of tested bins is thus only due to 
differences in the filtering step. 

The different tools apply pre-filtering steps that resulted in a 
very different number of tested bin pairs. HiCcompare performed 
a number of tests that is constantly close to the maximum and
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HiCDCPlus constantly performed a very low number of tests 
because it only tests (the union of) regions with an interaction 
considered significantly above the interaction background (FDR 
adjusted p-value < 10%). For the relatively short chromosome 21, 
multiHiCcompare did not perform any test (all interactions were 
filtered out at preprocessing). However, it performed a number 
of tests close the maximum for the other two chromosomes 
at resolutions 500 kb and 1 Mb. At a 500 kb resolution (the 
only resolution available for this tool), sslHiC performed a num-
ber of tests close to the maximum for the three chromosomes. 
Finally, diffHic and Selfish filtered out approximately half of the 
bin pairs. 

Note that the differences in the number of tested bin pairs are 
partially due to default values set differently by different tools 
for the same parameter: For instance, HiCcompare filters out bin 
pairs with an average A value smaller than the 10th percentile 
of A values while multiHiCcompare filters out bin pairs with an 
average A value smaller than 5. 

Type-I error control (H0 setting) 
Figure 4 provides the percentage of tests declared significant for 
all chromosomes, resolutions, and tools, based on a 5% and a 
1% thresholding of p-values and adjusted p-values. Figure S1 in 
Supplementary material additionally provides the same plots for 
a 10% threshold. 

In H0 settings, the percentage of p-values below 5% is expected 
to be at most 5% if the test is properly calibrated (type-I error con-
trol). A percentage much smaller than 5% indicates that the Type-I 
error control is valid but that the tool is conservative, suggesting 
that the test may be underpowered in non-H0 situations. Also, 
since some tools only returned the adjusted p-value, we also gave 
the percentage of adjusted p-values below 5%. Since p-values are 
adjusted to control the FDR, this percentage is expected to be 0 if 
the test is properly calibrated. However, it is not possible to assess 
how conservative the test is only based on adjusted p-values. 

The results shown in Fig. 4 are remarkably consistent across 
resolutions. This illustrates the fact that since FDR corre-
sponds to a proportion of false positives, FDR control is a 
priori designed to be comparable across studies with different 
numbers of tests. Overall, the results show that only diffHic 
and multiHiCcompare properly controlled the Type-I error on 
this dataset, with a percentage of tests declared positive very 
close to the expected value. Nonetheless, for chromosome 21, 
multiHiCcompare did not perform any test as discussed above 
(see Fig. 3). 

HiCcompare, which does not account for replicates and hence 
for variability within conditions, suffered from a small excess of 
false positives (e.g. chromosome 21, 1 Mb resolution, 1% risk). On 
the contrary, HiCDCPlus detected very few false positive results, 
except for chromosome 21 which displays a massive excess of 
false positives. This discrepancy between chromosomes could 
be related to the very low proportion of bin pairs passing the 
HiCDCPlus filters (see Fig. 3). Both Selfish and, in particular, 
FIND produced a large number of false positives, as visible 
in the plots based on adjusted p-values (bottom). For both 
methods, this could be explained by a statistical issue in the 
definition of the bin pair-level p-value (lack of multiple testing 
correction across radii for Selfish, and incorrect assumption 
of independence between aggregated p-values for FIND), as 
explained in Section “Methodological background of the tools.” 
sslHiC did not return any positive result based on adjusted p-
value thresholding (which is the expected behavior). However, 
since it does not provide raw p-values, we were not able to assess 

its proper control of Type-I error. Finally, no large difference was 
observed between the standard BH correction (“XXX-realFDR”) 
and the multiple test correction implemented in multiHiC-
compare and HiCcompare. This is confirmed by the strong 
linear relationship between these two quantities (Supplementary 
Fig. S2). 

For the tools that returned unadjusted p-values, Fig. 5 provides 
the ECDF of p-values. Note that the data displayed in Fig. 4 cor-
respond to the values of the ECDF at risk x = 5% (a) and 1% (b), 
respectively. 

For all resolutions and chromosomes, diffHic was the tool 
closest to the expected uniform distribution, followed closely by 
the slightly conservative multiHiCcompare (Fig. 5). HiCcompare 
exhibited a slight excess of very small p-values; in the area where 
the p-value is below 0.1%, the ECDF of HiCcompare was frequently 
above the diagonal (see also Fig. 4). This behavior can be explained 
by its incapacity to account for variability across replicates of one 
condition, resulting in an excess of false positives. In contrast, 
HiCDCPlus generally displayed the opposite behavior, suggesting 
a lack of power (especially for chromosomes 1 and 7). However, 
it occasionally presented a strong excess of false positives, as 
observed on chromosome 21. 

Precision and Recall (H1 setting) 
Figure 6a provides the proportion of tested interactions that are 
located within the target zone, where positive calls are expected 
(true signal). This proportion may vary even for tools that rely 
on similar models or methods, because different data filtering 
methods are applied before testing for differential interaction. 
Results confirmed that this filtering step can have per se a strong  
impact on the test. In particular, HiCDCPlus predominantly dis-
carded interactions outside the target zone rather than inside, 
which may be a desirable behavior. However, the overall number 
of retained interactions was generally very low for this tool (see 
Fig. 3 and the corresponding discussion). The other tools tended 
to generally have a proportion of tested interactions in the target 
zone close to the corresponding proportion in the original matrix 
(before filtering). 

Figure 6b displays PR curves based on predictions computed 
from adjusted p-values, for all chromosomes, resolutions, and 
tools. An ideal classifier would have a precision of one and a 
recall of one. The resulting PR curve, based on various adjusted 
p-value thresholds, would then be the horizontal line joining 
the point at (0, 1) coordinates to point at (1, 1) coordinates (i.e. 
varying power depending on the number of interactions selected 
by the threshold, but all true positives), followed by a vertical line 
joining (1, 1) and (1, 0) (i.e. negative interactions are all selected 
after the positive one, for larger thresholds). The symbols on 
the PR curves in Fig. 6 b indicate for each tool the obtained 
precision and recall when thresholding the adjusted p-values 
provided at risk 5%, a threshold that corresponds to standard 
practice. A well calibrated tool should have a precision above 
the dashed horizontal line at 95% (for a clearer visualization of 
these results, Fig. S3 in Supplementary material also provides 
the obtained precision and recall for additional adjusted p-values 
thresholds). 

In Fig. 6b, diffHic appears to be one of the best tools in the 
H1 setting, as it yields curves closest to the ideal classifier in 
a majority of cases. In particular, it performed best on smaller 
chromosomes and at higher resolutions. This variability seems 
to be directly related to the number of performed tests: The 
smaller the number of tests (chromosome 21 or lower resolutions 
correspond to smaller numbers of interactions), the better the
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Figure 4. Percentage of tests declared significant (H0 setting) for three chromosomes and three resolutions (200kb, 500kb, and 1Mb). Decisions are 
taken based on p-values (top) and adjusted p-values (bottom) with 5% (left) and 1% (right) risks. The black horizontal line (top figures) indicates the risk 
controlled by raw p-values. When the method did not perform a global FDR correction (see Table 1), we re-computed the adjusted p-values with the BH 
method applied to raw p-values (when available). This corresponds to columns named “XXX-realFDR” (bottom figures). sslHiC could only be used on 
500 kb resolution data and multiHiCcompare performed no test on chromosome 21 because of its filtering step. 

performance. However, in a number of cases, it did not properly 
control the FDR (the symbol corresponding to the 5% threshold 
of p-values is below the vertical dotted line at 95%). For instance, 
for chromosome 1, resolution 200 kb, the precision of diffHic was 
between 50 and 75% for the three thresholds. 

multiHiCcompare and HiCcompare often displayed similar 
performances (and sometimes better than diffHic), with a marked 
disadvantage of HiCcompare for the highest resolution (200 kb). 
Aside from this resolution, and despite not utilizing informa-
tion on biological replicates, HiCcompare achieved slightly better 
results than multiHiCcompare overall. Note that, similarly to the 
H0 setting, the difference between the standard BH correction 
(“XXX-realFDR”) and the multiple testing correction implemented 
in multiHiCcompare and HiCcompare is small, with a slight 
improvement of performances when the standard BH correction 
is used. However, none of the two tools and the two versions 
of the correction properly controls the FDR at 5%. The only 
exceptions are HiCcompare at resolutions 1 Mb and 500 kb, but 
only for chromosomes 1 and 7 and with a recall of zero for 
chromosome 1. 

From a PR curve point of view, FIND performed rather well for 
chromosome 1, especially at resolutions 500 kb and 1 Mb with 

a curve consistently close or above the ideal classifier. However, 
its performances were bad for chromosomes 7 and 21, as  all  
interactions had an adjusted p-value equal to 1. Note that, even 
for chromosome 1, FIND was far from properly controlling the FDR 
when thresholding the adjusted p-value. In all cases, its precision 
was close to 0. 

HiCDCPlus had a rather heterogeneous and mild performance 
across chromosomes and resolutions. However, it was systemati-
cally the second or third best performing method. 

Finally, although being somewhat heterogeneous between 
chromosomes and resolutions, Selfish and sslHiC had poor 
performances on this benchmark, altogether with PR curves 
usually close or below those of a random classifier. 

CTCF depletion study 
In order to test the tools in a realistic setting on a full size dataset, 
we retrieved and analyzed genome-wide Hi-C matrices from a 
CTCF depletion study in mouse [59] (see Methods). 

Figure 7 provides for each tool the joint distribution over the 
100 kb bins of the genome between the number of CTCF sites 
present in the bin (x-axis) and the number of differential inter-
actions in which the bin was involved after comparing matrices
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Figure 5. ECDF of p-values (H0 setting). Well-calibrated tools are expected to have an ECDF that closely follows the diagonal, corresponding to a uniform 
distribution of p-values under H0. An ECDF below the diagonal indicates a valid but conservative test, while an ECDF above the diagonal indicates 
that the test is not properly calibrated, yielding an excess of false positives. multiHiCcompare performed no test on chromosome 21 because of its 
filtering step. 

from the CTCF+ and the CTCF- conditions ( y-axis). Since CTCF 
depletion is expected to predominantly impact genomic regions 
with CTCF binding sites, a positive correlation should be observed 
between these quantities. 

This was the case for some of the tools. In particular, 
Spearman’s correlation values of r = 0.44, r = 0.42, and  r = 0.41 
were, respectively, obtained for multiHiCcompare, HiCDCPlus, 
and diffHic. Globally, these tools detected more differential 
interactions between CTCF-rich regions than between CTCF-
poor regions, as expected. However, in line with previous results 
from the H0 setting (Fig. 3), HiCDCPlus realized a low number 
of tests compared to the total number of bin pairs in the whole 
dataset. Less than 5% of bin pairs were kept after the filtering step 
(Supplementary Fig. S4). 

On the contrary, no substantial correlation was obtained for the 
other tools, with r = 0.04 for HiCcompare, r = 0.05 for Selfish, and  
r = 0.08 for FIND. 

Computational time 
Figure 8 shows the computational time required for performing 
the tests in the H1 setting and for the CTCF depletion dataset. In 
addition, Supplementary Fig. S5 provides another representation 
of these results for the H1 setting with respect to the number 
of tests performed, and Supplementary Fig. S6 gives the total 
computational time required for the CTCF depletion dataset. 

FIND exhibited large computational times for certain chro-
mosomes and resolutions. However, the scalability of this tool 
was not the worst: HiCDCPlus showed the greatest increase in 
computational time with respect to the number of performed 

tests. This can primarily be attributed to the fact that its filtering 
steps removed most bin pairs, and its computational time scaled 
with the total number of bin pairs rather than the number of 
bin pairs remaining after filtering. The tools showing the best 
scalability were HiCcompare, multiHiCcompare, and Selfish. This 
result may be partly attributed to the faster implementation of 
the cyclic LOESS (used for MA and MD normalization) available in 
HiCcompare and multiHiCcompare, but not in diffHic. 

Finally, as sslHiC is designed to run on GPU processors, its com-
putational time could not be directly compared with that of the 
other tools. Despite its relatively short runtime, its computational 
resource requirements were substantial. 

Discussion and conclusion 
Our benchmark allowed to evaluate and compare the statistical 
performances of Hi-C data differential analysis tools on practical 
examples. Importantly, the results revealed that the FDR was not 
properly controlled across all tools. This could be due to the small 
number of samples in our experiments (only two per condition 
for the H1 setting), highlighting the importance of that factor. 
Nonetheless, some tools—particularly diffHic—still managed to 
correctly control the Type-I error rate in the H0 setting. Addi-
tionally, the per-distance-basis FDR correction appeared to have 
a limited effect, especially when applied to a single chromosome. 

Globally, in our benchmark, diffHic delivered the best results. 
It properly controlled the Type-I error rate in the H0 setting and 
was the only tool to properly control the FDR in some cases. 
Its power, for a 5% risk, was also among the best, always larger

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/2/bbaf074/8051526 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 16 M

arch 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf074#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf074#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf074#supplementary-data


Differential analysis of Hi-C data | 13

Figure 6. Results for H1 setting. (a) Proportion of tested interactions that are in the target zone for each tool. The horizontal line indicates the proportion 
of interactions within the target zone of the original data before filtering. The reported proportions (y-axis) lie above or below the horizontal line 
depending on whether the tools (x-axis) predominantly filter interactions outside or inside the target zone, respectively. (b) PR curves computed from 
adjusted p-values, displaying recall (or power, x-axis) and precision (y-axis). For each method, the point corresponding to a threshold = 0.05 (target FDR, 
as claimed by the method) is marked with a specific symbol. For methods that filtered out all interactions in the target zone before the test, the Recall 
cannot be computed (because the denominator would be 0). In this case, we arbitrarily represented them with a circle at (0, 0). Finally, the top horizontal 
dashed line (in black) corresponds to a Precision of 95% and the bottom horizontal dashed line (in blue) corresponds to the precision expectation of a 
uniform random draw of interactions. sslHiC could only be used on 500 kb resolution data and multiHiCcompare performed no test on chromosome 
21 because of its filtering step. 

Figure 7. Joint distribution of the number of CTCF sites and the number of differential interactions per genomic bin of 100 kb in the CTCF depletion 
dataset. Each boxplot represents the distribution of differential interactions (y-axis) obtained by a given tool (one per panel) between matrices from the 
CTCF+ and the CTCF- conditions for genomic bins with 0, 1, 2, or at least 3 CTCF sites (x-axis). The Spearman correlation between these values across all 
bins is provided for each tool (r). Bins with many CTCF sites are expected to be predominantly involved in differential interactions upon CTCF depletion 
compared to bins with few CTCF sites, as observed in results from diffHic and HiCDCPlus for instance (left side). 
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Figure 8. Computational time. Left: Computational time in seconds (y-axis) needed for each tool (y-axis) to run in the H1 setting. sslHiC could only be 
used on 500 kb resolution data and multiHiCcompare performed no test on chromosome 21 because of its filtering step. Right: Computational time in 
seconds (y-axis) versus the number of tests performed in a given chromosome (y-axis) for the CTCF depletion dataset. sslHiC could not be used. 

than 50% and generally close to 100%. Interestingly, for the lowest 
resolution, HiCcompare also showed interesting performances in 
the H 1 setting but always exhibited an inflated number of false 
positives in the H0 setting and gave disappointing results in the 
CTCF depletion use case. 

diffHic and multiHiCcompare produced comparable results in 
the H0 setting and, in terms of PR curves, in the H1 setting. Both 
tools also showed good biological consistency between Hi-C and 
ChIP-seq data in the CTCF depletion analysis. This alignment was 
expected, as they rely on the same model. However, the perfor-
mance differences observed between the two tools underscore 
the importance of filtering and the choice of default param-
eters. Notably, the default filters in multiHiCcompare seemed 
sometimes too stringent (e.g. no results were obtained for some 
chromosomes in both the simulated and real-world experiments). 
Additionally, the FPR of multiHiCcompare consistently exceeded 
30% (and often surpassed 50%) for a 5% risk threshold. The 
strong impact of preprocessing steps is unsurprising and has been 
previously acknowledged in other omics studies [61]. 

HiCDCPlus was also found to be overly stringent in its fil-
tering step, consistently performing a very low number of tests. 
However, in the CTCF depletion application, it produced good 
results. 

FIND presents an interesting case. In both simulation settings, 
the tool tended to predict too many false positives for a given 
threshold. However, on chromosome 1 in the H1 setting, it demon-
strated excellent ordering of interactions based on adjusted p-
values, with the PR curve closely approaching that of a perfect 
classifier. This suggests that the adjusted p-values returned by 
FIND can serve as a reliable score for ranking interactions by sig-
nificance level, although they cannot be statistically interpreted. 
In this case, using higher thresholds than typically expected is 
recommended. However, for chromosomes 7 and 21, all adjusted 
p-values returned by FIND were equal to 1. Overall, contrary to 
diffHic, the performance differences observed with FIND do not 
seem to be directly related to the number of tested interactions. 
For instance, in the H1 setting, FIND performed better on the 
largest chromosome but worse for the highest resolution of 200 
kb, which has more interactions to test. 

Interestingly, 2D-aware tools such as FIND, Selfish, and  sslHiC 
leverage the spatial auto-correlation inherent to the 2D Hi-C 
matrices in their modeling. However, these tools did not generally 

show superior performances, even in situations like the H1 setting, 
where there is a strong spatial dependency in differential interac-
tion locations within the 2D Hi-C matrix. This suggests that the 
current methods for incorporating spatial 2D structure may not 
be effectively capturing its relevance. 

Finally, it is worth noting that the currently available tools are 
still unable to accommodate a wide variety of study designs. Few 
methods allow to use covariates (see Table 1) and, to the best of 
our knowledge, no tool is capable of properly handling paired data 
(e.g. differences between two tissues, with multiple individuals 
each providing a pair of tissue samples as replicates) or repeated 
measurement designs (similarly to what is done in mixed 
models). 

In this study, we focused on two datasets, encompassing two 
simulation settings and a real-world application. Expanding the 
investigation to include broader datasets and experimental set-
tings would be valuable to assess the robustness of our conclu-
sions across more varied designs, resolutions, and size effects. 
Additionally, our analysis underscored the need for a deeper 
understanding of the complex interplay between preprocessing 
steps—particularly normalization types and filtering—and the 
models used. 

Key Points 
• We reviewed and benchmarked available tools for differ-

ential analysis of Hi-C matrices. 
• Preprocessing steps differed between tools, strongly 

impacting the results, even for tools with the same type 
of model. 

• None of the tools properly controlled the FDR at the 
expected rate in our simulation setting. However, some 
tools effectively controlled the Type-I error in situations 
where no signal was expected in the data. 

• In our simulations, diffHic yielded the best overall 
results. Currently, tools based on a 2D-aware model did 
not outperform the others. 

• Our review highlighted the need for models and tools 
able to handle paired designs and repeated measure-
ment designs. 

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/2/bbaf074/8051526 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 16 M

arch 2025



Differential analysis of Hi-C data | 15

Acknowledgments 
We are grateful to the genotoul bioinformatics platform Toulouse 
Occitanie (Bioinfo Genotoul, https://doi.org/10.15454/1.557236932 
8961167E12) for providing assistance, as well as computing and 
storage resources. 

Author contributions 
SF, PN, MZ, and NV conceived the project and designed the study. 
All authors contributed to the review and to the benchmark. All 
authors wrote, read, revised, and approved the manuscript. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 

Conflicts of interest: The authors declare no conflict of interest. 

Funding 
This work is funded by the INRAE/DIGIT-BIO network ChrocoNET 
and by the CNRS project SCALES (Mission “Osez l’interdiscip 
linarité”). E.J.’s PhD is funded by INRAE. 

Data availability 
For the H0 and H1 settings, raw sequencing data were obtained 
from the ENCODE project https://www.encodeproject.org/ using 
accession ENCSR295BDK. Processed Hi-C data (by chromosome, 
resolution, and technical replicates) and corresponding quality 
controls are available at https://doi.org/10.57745/LR0W9R. 

For the CTCF dataset, Hi-C matrices and ChIP-seq peaks were 
retrieved from GEO using accession GSE168251 and GSE129997, 
respectively. Processed Hi-C data (by chromosome at 100 kb 
resolution) and converter script are available at https://doi. 
org/10.57745/LR0W9R. 

References 
1. Bonev B, Cavalli G. Organization and function of the 3D 

genome. Nat Rev Genet 2016;17:661–78. https://doi.org/10.1038/ 
nrg.2016.112 

2. Lieberman-Aiden E, Van Berkum NL, Williams L. et al. Compre-
hensive mapping of long-range interactions reveals folding prin-
ciples of the human genome. Science 2009;326:289–93. https:// 
doi.org/10.1126/science.1181369 

3. Rao SSP, Huntley MH, Durand NC. et al. A  3D  map  of  the  
human genome at kilobase resolution reveals principle of chro-
matin looping. Cell 2014;159:1665–80. https://doi.org/10.1016/j. 
cell.2014.11.021 

4. Dali R, Blanchette M. A critical assessment of topologically 
associating domain prediction tools. Nucleic Acid Res 2017;45: 
2994–3005. https://doi.org/10.1093/nar/gkx145 

5. Zufferey M, Tavernari D, Oricchio E. et al. Comparison of compu-
tational methods for the identification of topologically associ-
ating domains. Genome Biol 2018;19:217. https://doi.org/10.1186/ 
s13059-018-1596-9 

6. Liu L, Han K, Huimin Sun L. et al. A comprehensive review of 
bioinformatics tools for chromatin loop calling. Brief Bioinform 
2023;24:bbad072. https://doi.org/10.1093/bib/bbad072 

7. Lupiáñez DG, Kraft K, Heinrich V. et al. Disruptions of 
topological chromatin domains cause pathogenic rewiring of 

gene-enhancer interactions. Cell 2015;161:1012–25. https://doi. 
org/10.1016/j.cell.2015.04.004 

8. Spielmann M, Lupiáñez DG, Mundlos S. Structural variation 
in the 3D genome. Nat Rev Genet 2018;19:453–67. https://doi. 
org/10.1038/s41576-018-0007-0 

9. Marieke Oudelaar A, Higgs DR. The relationship between 
genome structure and function. Nat Rev Genet 2020;22:154–68. 
https://doi.org/10.1038/s41576-020-00303-x 

10. Gunsalus LM, McArthur E, Gjoni K. et al. Comparing chromatin 
contact maps at scale: methods and insights bioRxiv preprint 
2023.04.04.535480. 2023. 

11. Yang T, Zhang F, Yardimci GG. et al. HiCRep: assessing the repro-
ducibility of Hi-C data using a stratum-adjusted correlation 
coefficient. Genome Res 2017;27:1939–49. https://doi.org/10.1101/ 
gr.220640.117 

12. Wang Z, Zhang Y, Zang C. BART3D: inferring transcriptional reg-
ulators associated with differential chromatin interactions from 
Hi-C data. Bioinformatics 2021;37:3075–8. https://doi.org/10.1093/ 
bioinformatics/btab173 

13. Soler-Vila P, Cuscó P, Farabella I. et al. Hierarchical chromatin 
organization detected by TADpole. Nucleic Acids Res 2020;48:e39. 
https://doi.org/10.1093/nar/gkaa087 

14. Mourad R. TADreg: a versatile regression framework for 
TAD identification, differential analysis and rearranged 3D 
genome prediction. BMC Bioinformatics 2022;23:82. https://doi. 
org/10.1186/s12859-022-04614-0 

15. Chen F, Li G, Zhang MQ. et al. HiCDB: a sensitive and 
robust method for detecting contact domain boundaries. 
Nucleic Acids Res 2018;46:11239–50. https://doi.org/10.1093/nar/ 
gky789 

16. Chakraborty A, Wang JG, Ay F. dcHiC detects differential 
compartments across multiple Hi-C datasets. Nat Commun 
2022;13:6827. https://doi.org/10.1038/s41467-022-34626-6 

17. Hua D, Ming G, Zhang X. et al. DiffDomain enables iden-
tification of structurally reorganized topologically associat-
ing domains. Nat Commun 2024;15:502. https://doi.org/10.1038/ 
s41467-024-44782-6 

18. Cook KB, Hristov BH, Le Roch KG. et al. Measuring sig-
nificant changes in chromatin conformation with ACCOST. 
Nucleic Acids Res 2020;48:2303–11. https://doi.org/10.1093/nar/ 
gkaa069 

19. Lun ATL, Smyth GK. diffHic: a Bioconductor package to detect 
differential genomic interactions in Hi-C data. BMC Bioinformatics 
2015;16:258. https://doi.org/10.1186/s12859-015-0683-0 

20. Djekidel MN, Chen Y, Zhang MQ. FIND: difFerential chromatin 
INteractions Detection using a spatial Poisson process. Genome 
Res 2018;28:412–22. https://doi.org/10.1101/gr.212241.116 

21. Stansfield JC, Cresswell KG, Vladimirov VI. et al. HiCcom-
pare: an R-package for joint normalization and comparison 
of HI-C datasets. BMC Bioinformatics 2018;19:279. https://doi. 
org/10.1186/s12859-018-2288-x 

22. Sahin M, Wong W, Zhan Y. et al. HiC-DC+ enables system-
atic 3D interaction calls and differential analysis for Hi-C 
and HiChIP. Nat Commun 2021;12:3366. https://doi.org/10.1038/ 
s41467-021-23749-x 

23. Stansfield JC, Cresswell KG, Dozmorov MG. multiHiCcom-
pare: joint normalization and comparative analysis of complex 
Hi-C experiments. Bioinformatics 2019;35:2916–23. https://doi. 
org/10.1093/bioinformatics/btz048 

24. Ardakany AR, Ay F, Lonardi S. Selfish: discovery of differential 
chromatin interactions via a self-similarity measure. Bioinfor-
matics 2019;35:i145–53. https://doi.org/10.1093/bioinformatics/ 
btz362

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/2/bbaf074/8051526 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 16 M

arch 2025

https://doi.org/10.15454/1.5572369328961167E12
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf074#supplementary-data
https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.encodeproject.org/
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.57745/LR0W9R
https://doi.org/10.1038/nrg.2016.112
https://doi.org/10.1038/nrg.2016.112
https://doi.org/10.1038/nrg.2016.112
https://doi.org/10.1038/nrg.2016.112
https://doi.org/10.1126/science.1181369
https://doi.org/10.1126/science.1181369
https://doi.org/10.1126/science.1181369
https://doi.org/10.1126/science.1181369
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1093/nar/gkx145
https://doi.org/10.1093/nar/gkx145
https://doi.org/10.1093/nar/gkx145
https://doi.org/10.1093/nar/gkx145
https://doi.org/10.1093/nar/gkx145
https://doi.org/10.1186/s13059-018-1596-9
https://doi.org/10.1186/s13059-018-1596-9
https://doi.org/10.1186/s13059-018-1596-9
https://doi.org/10.1186/s13059-018-1596-9
https://doi.org/10.1093/bib/bbad072
https://doi.org/10.1093/bib/bbad072
https://doi.org/10.1093/bib/bbad072
https://doi.org/10.1093/bib/bbad072
https://doi.org/10.1093/bib/bbad072
https://doi.org/10.1016/j.cell.2015.04.004
https://doi.org/10.1016/j.cell.2015.04.004
https://doi.org/10.1016/j.cell.2015.04.004
https://doi.org/10.1016/j.cell.2015.04.004
https://doi.org/10.1016/j.cell.2015.04.004
https://doi.org/10.1038/s41576-018-0007-0
https://doi.org/10.1038/s41576-018-0007-0
https://doi.org/10.1038/s41576-018-0007-0
https://doi.org/10.1038/s41576-018-0007-0
https://doi.org/10.1038/s41576-020-00303-x
https://doi.org/10.1038/s41576-020-00303-x
https://doi.org/10.1038/s41576-020-00303-x
https://doi.org/10.1038/s41576-020-00303-x
https://doi.org/10.1038/s41576-020-00303-x
https://doi.org/10.1101/gr.220640.117
https://doi.org/10.1101/gr.220640.117
https://doi.org/10.1101/gr.220640.117
https://doi.org/10.1101/gr.220640.117
https://doi.org/10.1093/bioinformatics/btab173
https://doi.org/10.1093/bioinformatics/btab173
https://doi.org/10.1093/bioinformatics/btab173
https://doi.org/10.1093/bioinformatics/btab173
https://doi.org/10.1093/bioinformatics/btab173
https://doi.org/10.1093/nar/gkaa087
https://doi.org/10.1093/nar/gkaa087
https://doi.org/10.1093/nar/gkaa087
https://doi.org/10.1093/nar/gkaa087
https://doi.org/10.1093/nar/gkaa087
https://doi.org/10.1186/s12859-022-04614-0
https://doi.org/10.1186/s12859-022-04614-0
https://doi.org/10.1186/s12859-022-04614-0
https://doi.org/10.1186/s12859-022-04614-0
https://doi.org/10.1093/nar/gky789
https://doi.org/10.1038/s41467-022-34626-6
https://doi.org/10.1038/s41467-022-34626-6
https://doi.org/10.1038/s41467-022-34626-6
https://doi.org/10.1038/s41467-022-34626-6
https://doi.org/10.1038/s41467-024-44782-6
https://doi.org/10.1038/s41467-024-44782-6
https://doi.org/10.1038/s41467-024-44782-6
https://doi.org/10.1038/s41467-024-44782-6
https://doi.org/10.1093/nar/gkaa069
https://doi.org/10.1186/s12859-015-0683-0
https://doi.org/10.1186/s12859-015-0683-0
https://doi.org/10.1186/s12859-015-0683-0
https://doi.org/10.1186/s12859-015-0683-0
https://doi.org/10.1101/gr.212241.116
https://doi.org/10.1101/gr.212241.116
https://doi.org/10.1101/gr.212241.116
https://doi.org/10.1101/gr.212241.116
https://doi.org/10.1186/s12859-018-2288-x
https://doi.org/10.1186/s12859-018-2288-x
https://doi.org/10.1186/s12859-018-2288-x
https://doi.org/10.1186/s12859-018-2288-x
https://doi.org/10.1186/s12859-018-2288-x
https://doi.org/10.1038/s41467-021-23749-x
https://doi.org/10.1038/s41467-021-23749-x
https://doi.org/10.1038/s41467-021-23749-x
https://doi.org/10.1038/s41467-021-23749-x
https://doi.org/10.1038/s41467-021-23749-x
https://doi.org/10.1093/bioinformatics/btz048
https://doi.org/10.1093/bioinformatics/btz048
https://doi.org/10.1093/bioinformatics/btz048
https://doi.org/10.1093/bioinformatics/btz048
https://doi.org/10.1093/bioinformatics/btz048
https://doi.org/10.1093/bioinformatics/btz362
https://doi.org/10.1093/bioinformatics/btz362
https://doi.org/10.1093/bioinformatics/btz362
https://doi.org/10.1093/bioinformatics/btz362
https://doi.org/10.1093/bioinformatics/btz362


16 | Jorge et al.

25. Li H, He X, Kurowski L. et al. Improving comparative analyses of 
Hi-C data via contrastive self-supervised learning. Brief Bioinform 
2023;24:bbad193. https://doi.org/10.1093/bib/bbad193 

26. Nicoletti C. Methods for the differential analysis of Hi-C data. 
In: Bicciato S, Ferrari F (eds.), Hi-C Data Analysis, Volume 2301 
of Methods in Molecular Biology, pp. 61–95. New York, NY, USA: 
Humana Press,Springer, 202210.1007/978-1-0716-1390-0_4. 

27. Galan S, Machnik N, Kruse K. et al. CHESS enables quantitative 
comparison of chromatin contact data and automatic feature 
extraction. Nat Genet 2020;52:1247–55. https://doi.org/10.1038/ 
s41588-020-00712-y 

28. Bourgon R, Gentleman R, Huber W. Independent filtering 
increases detection power for high-throughput experiments. 
Proc Natl Acad Sci 2010;107:9546–51. https://doi.org/10.1073/ 
pnas.0914005107 

29. Rau A, Gallopin M, Celeux G. et al. Data-based filtering for 
replicated high-throughput transcriptome sequencing experi-
ments. Bioinformatics 2013;29:2146–52. https://doi.org/10.1093/ 
bioinformatics/btt350 

30. Lyu H, Liu E, Zhifang W. Comparison of normalization meth-
ods for Hi-C data. Biotechniques 2019;68:56–64. https://doi. 
org/10.2144/btn-2019-0105 

31. Robinson MD, Oshlack A. A scaling normalization method for 
differential expression analysis of RNA-seq data. Genome Biol 
2010;11:R25. https://doi.org/10.1186/gb-2010-11-3-r25 

32. Ballman KV, Grill DE, Oberg AL. et al. Faster cyclic loess: nor-
malizing RNA arrays via linear models. Bioinformatics 2004;20: 
2778–86. https://doi.org/10.1093/bioinformatics/bth327 

33. Lun ATL, Smyth GK. Csaw: a bioconductor package for dif-
ferential binding analysis of ChIP-seq data using sliding win-
dows. Nucleic Acids Res 2016;44:e45. https://doi.org/10.1093/nar/ 
gkv1191 

34. Ay F, Noble WS. Analysis methods for studying the 3D archi-
tecture of the genome. Genome Biol 2015;16:183. https://doi. 
org/10.1186/s13059-015-0745-7 

35. Imakaev M, Fudenberg G, McCord RP. et al. Iterative correction 
of Hi-C data reveals hallmarks of chromosome organization. Nat 
Methods 2012;9:999–1003. https://doi.org/10.1038/nmeth.2148 

36. Knight PA, Ruiz D. A fast algorithm for matrix balancing. IMA 
J Numer Anal 2013;33:1029–47. https://doi.org/10.1093/imanum/ 
drs019 

37. Durand NC, Robinson JT, Shamim MS. et al. Juicebox provides 
a visualization system for Hi-C contact maps with unlim-
ited zoom. Cell Systems 2016;3:99–101. https://doi.org/10.1016/j. 
cels.2015.07.012 

38. Servant N, Varoquaux N, Heard E. et al. Effective normaliza-
tion for copy number variation in Hi-C data. BMC Bioinformatics 
2018;19:313. https://doi.org/10.1186/s12859-018-2256-5 

39. Bacciu D, Errica F, Micheli A. et al. A gentle introduction to deep 
learning for graphs. Neural Netw 2020;129:203–21. https://doi. 
org/10.1016/j.neunet.2020.06.006 

40. Zhou J, Cui G, Shengding H. et al. Graph neural networks: a review 
of methods and applications. AI Open 2020;1:57–81. https://doi. 
org/10.1016/j.aiopen.2021.01.001 

41. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a biocon-
ductor package for differential expression analysis of digital 
gene expression data. Bioinformatics 2010;26:139–40. https://doi. 
org/10.1093/bioinformatics/btp616 

42. Love MI, Huber W, Anders S. Moderated estimation of fold 
change and dispersion for RNA-seq data with DESeq2. Genome 
Biol 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8 

43. Song C, Tseng GC. Hypothesis setting and order statistic for 
robust genomic meta-analysis. Ann Appl Stat 2014;8:777–800. 
https://doi.org/10.1214/13-AOAS683 

44. Benjamini Y, Hochberg Y. Controlling the false discovery 
rate: a practical and powerful approach to multiple testing. 
J R Stat Soc Series B 1995;57:289–300. https://doi.org/10.1111/ 
j.2517-6161.1995.tb02031.x 

45. Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C data and 
other genomically labeled arrays. Bioinformatics 2019;36:311–6. 

46. Kruse K, Hug CB, Vaquerizas JM. FAN-C: a feature-rich frame-
work for the analysis and visualisation of chromosome con-
formation capture data. Genome Biol 2020;21:303. https://doi. 
org/10.1186/s13059-020-02215-9 

47. Servant N, Varoquaux N, Lajoie BR. et al. HiC-pro: an opti-
mized and flexible pipeline for Hi-C data processing. Genome Biol 
2015;16:259. https://doi.org/10.1186/s13059-015-0831-x 

48. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities 
for comparing genomic features. Bioinformatics 2010;26:841–2. 
https://doi.org/10.1093/bioinformatics/btq033 

49. Lun ATL, Perry M, Ing-Simmons E. Revised infrastructure for 
genomic interactions: bioconductor classes for Hi-C, ChIA-
PET and related experiments. F1000Res 2016;5:950. https://doi. 
org/10.12688/f1000research.8759.1 

50. Huber W, Carey VJ, Gentleman R. et al. Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods 
2015;12:115–21. https://doi.org/10.1038/nmeth.3252 

51. Heinz S, Texari L, Hayes MGB. et al. Transcription elongation 
can affect genome 3D structure. Cell 2018;174:1522–1536.e22. 
https://doi.org/10.1016/j.cell.2018.07.047 

52. Dìaz N, Kruse K, Erdmann T. et al. Chromatin conforma-
tion analysis of primary patient tissue using a low input Hi-
C method.  Nat Commun 2018;9:4938. https://doi.org/10.1038/ 
s41467-018-06961-0 

53. Rao SSP, Su-Chen H, Hilaire BGS. et al. Cohesin loss elimi-
nates all loop domains. Cell 2017;171:305–320.e24. https://doi. 
org/10.1016/j.cell.2017.09.026 

54. Benidt S, Nettleton D. SimSeq: a nonparametric approach to 
simulation of RNA-sequence datasets. Bioinformatics 2015;31: 
2131–40. https://doi.org/10.1093/bioinformatics/btv124 

55. Chalise P, Raghavan R, Fridley B. InterSIM: Simulation of Inter-
Related Genomic Datasets 2018. R package (version 2.2.0). 

56. Gerard D. Data-based RNA-seq simulations by binomial thin-
ning. BMC Bioinformatics 2020;21:206. https://doi.org/10.1186/ 
s12859-020-3450-9 

57. The ENCODE Project Consortium . An integrated encyclopedia 
of DNA elements in the human genome. Nature 2012;489:57–74. 
https://doi.org/10.1038/nature11247 

58. Ewels PA, Peltzer A, Fillinger S. et al. The nf-core framework 
for community-curated bioinformatics pipelines. Nat Biotechnol 
2020;38:276–8. https://doi.org/10.1038/s41587-020-0439-x 

59. Zhang H, Lam J, Zhang D. et al. CTCF and transcription influence 
chromatin structure re-configuration after mitosis. Nat Commun 
2021;12:5157. https://doi.org/10.1038/s41467-021-25418-5 

60. Zhang H, Emerson DJ, Gilgenast TG. et al. Chromatin 
structure dynamics during the mitosis-to-G1 phase transition. 
Nature 2019;576:158–62. https://doi.org/10.1038/s41586-019-
1778-y 

61. Luppi AI, Gellersen HM, Liu Z-Q. et al. Systematic evaluation of 
fMRI data-processing pipelines for consistent functional con-
nectomics. Nat Commun 2024;15:4745. https://doi.org/10.1038/ 
s41467-024-48781-5 

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
Briefings in Bioinformatics, 2025, 26(2), bbaf074 
https://doi.org/10.1093/bib/bbaf074 
Review

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/2/bbaf074/8051526 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 16 M

arch 2025

https://doi.org/10.1093/bib/bbad193
https://doi.org/10.1093/bib/bbad193
https://doi.org/10.1093/bib/bbad193
https://doi.org/10.1093/bib/bbad193
https://doi.org/10.1093/bib/bbad193
10.1007/978-1-0716-1390-0_4
https://doi.org/10.1038/s41588-020-00712-y
https://doi.org/10.1038/s41588-020-00712-y
https://doi.org/10.1038/s41588-020-00712-y
https://doi.org/10.1038/s41588-020-00712-y
https://doi.org/10.1038/s41588-020-00712-y
https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1073/pnas.0914005107
https://doi.org/10.1093/bioinformatics/btt350
https://doi.org/10.1093/bioinformatics/btt350
https://doi.org/10.1093/bioinformatics/btt350
https://doi.org/10.1093/bioinformatics/btt350
https://doi.org/10.1093/bioinformatics/btt350
https://doi.org/10.2144/btn-2019-0105
https://doi.org/10.2144/btn-2019-0105
https://doi.org/10.2144/btn-2019-0105
https://doi.org/10.2144/btn-2019-0105
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1093/bioinformatics/bth327
https://doi.org/10.1093/bioinformatics/bth327
https://doi.org/10.1093/bioinformatics/bth327
https://doi.org/10.1093/bioinformatics/bth327
https://doi.org/10.1093/bioinformatics/bth327
https://doi.org/10.1093/nar/gkv1191
https://doi.org/10.1093/nar/gkv1191
https://doi.org/10.1093/nar/gkv1191
https://doi.org/10.1093/nar/gkv1191
https://doi.org/10.1093/nar/gkv1191
https://doi.org/10.1186/s13059-015-0745-7
https://doi.org/10.1186/s13059-015-0745-7
https://doi.org/10.1186/s13059-015-0745-7
https://doi.org/10.1186/s13059-015-0745-7
https://doi.org/10.1038/nmeth.2148
https://doi.org/10.1038/nmeth.2148
https://doi.org/10.1038/nmeth.2148
https://doi.org/10.1038/nmeth.2148
https://doi.org/10.1093/imanum/drs019
https://doi.org/10.1093/imanum/drs019
https://doi.org/10.1093/imanum/drs019
https://doi.org/10.1093/imanum/drs019
https://doi.org/10.1093/imanum/drs019
https://doi.org/10.1016/j.cels.2015.07.012
https://doi.org/10.1016/j.cels.2015.07.012
https://doi.org/10.1016/j.cels.2015.07.012
https://doi.org/10.1016/j.cels.2015.07.012
https://doi.org/10.1016/j.cels.2015.07.012
https://doi.org/10.1186/s12859-018-2256-5
https://doi.org/10.1186/s12859-018-2256-5
https://doi.org/10.1186/s12859-018-2256-5
https://doi.org/10.1186/s12859-018-2256-5
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1214/13-AOAS683
https://doi.org/10.1214/13-AOAS683
https://doi.org/10.1214/13-AOAS683
https://doi.org/10.1214/13-AOAS683
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1186/s13059-020-02215-9
https://doi.org/10.1186/s13059-020-02215-9
https://doi.org/10.1186/s13059-020-02215-9
https://doi.org/10.1186/s13059-020-02215-9
https://doi.org/10.1186/s13059-015-0831-x
https://doi.org/10.1186/s13059-015-0831-x
https://doi.org/10.1186/s13059-015-0831-x
https://doi.org/10.1186/s13059-015-0831-x
https://doi.org/10.1186/s13059-015-0831-x
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.12688/f1000research.8759.1
https://doi.org/10.12688/f1000research.8759.1
https://doi.org/10.12688/f1000research.8759.1
https://doi.org/10.12688/f1000research.8759.1
https://doi.org/10.12688/f1000research.8759.1
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1016/j.cell.2018.07.047
https://doi.org/10.1016/j.cell.2018.07.047
https://doi.org/10.1016/j.cell.2018.07.047
https://doi.org/10.1016/j.cell.2018.07.047
https://doi.org/10.1016/j.cell.2018.07.047
https://doi.org/10.1038/s41467-018-06961-0
https://doi.org/10.1038/s41467-018-06961-0
https://doi.org/10.1038/s41467-018-06961-0
https://doi.org/10.1038/s41467-018-06961-0
https://doi.org/10.1016/j.cell.2017.09.026
https://doi.org/10.1016/j.cell.2017.09.026
https://doi.org/10.1016/j.cell.2017.09.026
https://doi.org/10.1016/j.cell.2017.09.026
https://doi.org/10.1016/j.cell.2017.09.026
https://doi.org/10.1093/bioinformatics/btv124
https://doi.org/10.1093/bioinformatics/btv124
https://doi.org/10.1093/bioinformatics/btv124
https://doi.org/10.1093/bioinformatics/btv124
https://doi.org/10.1093/bioinformatics/btv124
https://doi.org/10.1186/s12859-020-3450-9
https://doi.org/10.1186/s12859-020-3450-9
https://doi.org/10.1186/s12859-020-3450-9
https://doi.org/10.1186/s12859-020-3450-9
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41467-021-25418-5
https://doi.org/10.1038/s41467-021-25418-5
https://doi.org/10.1038/s41467-021-25418-5
https://doi.org/10.1038/s41467-021-25418-5
https://doi.org/10.1038/s41586-019-1778-y
https://doi.org/10.1038/s41467-024-48781-5
https://doi.org/10.1038/s41467-024-48781-5
https://doi.org/10.1038/s41467-024-48781-5
https://doi.org/10.1038/s41467-024-48781-5
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bib/bbaf074

	 A comprehensive review and benchmark of differential analysis tools for Hi-C data
	Introduction
	Methods
	Implementation and usability of the tools
	Numerical experiments
	Results
	Discussion and conclusion
	Key Points
	Acknowledgments
	Author contributions
	Supplementary data
	Funding
	Data availability


