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3D organization of DNA as a regulatory layer
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DNA organization

[Annunziato, 2008] 2 meters compressed in 6 µm

[Servant, 2017] adapted from

[Bonev and Cavalli, 2016]
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Impact on DNA functionning [Spielmann et al., 2018]
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Hi-C experiment
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Hi-C data
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to visualize
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Images: adapted from [Li et al., 2014] (top) and courtesy of Sylvain Foissac + own work (bottom).
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Where Statistics comes into play

Data: (Hij)ij , symmetric matrix where
entries are counts

Hij : proxy of the spatial proximity between
genomic position i and j (call “bins”; (i , j)
is a “bin pair” or a “pixel”)

Series of works on:

Hi-C data clustering

Statistical tests for Hi-C data
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1. Hi-C matrices and hierarchical clustering [Neuvial et al., 2023]

Idea used in: [Fraser et al., 2015,

Soler-Vila et al., 2020, Zhang et al., 2021b]

among others
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Clustering based on Hi-C matrices

Summary of the work performed in: Projet CNRS SCALES (with P. Neuvial & S.
Foissac). Thèse INRAE/Inria Nathanaël Randriamihamison (also with M. Chavent)

Contributions

1. extend Ward’s HC to similarity matrices as Hi-C with adjacency
constraint [Randriamihamison et al., 2021]

2. study of the mathematical properties
[Randriamihamison et al., 2021]

3. study of reversals in practice on Hi-C matrices
[Randriamihamison et al., 2021]

4. fast version using a band computation [Ambroise et al., 2019],
implemented in the R package adjclust
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How is hierarchical clustering usually performed on Hi-C matrices?
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Why is it not satisfactory?
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2. sparse vs full representations
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2. Motivation example for tests in Hi-C data: Pig3D genome
project

[Marti-Marimon et al., 2018] (courtesy of Sylvain Foissac)
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Standard methods for differential analysis of Hi-C data

Pixel-based methods

Structure-based methods

[Gjoni et al., 2025]
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Structure-based methods

▶ target a specific structure

▶ limited to this specific structure and sensitive to differences in methods for
structure-discovery [Forcato et al., 2017]
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Pixel-based methods [Jorge et al., 2025]
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Most accurate method: diffHic [Lun and Smyth, 2015]

1. normalize data with MA trend correction by cyclic LOESS

2. fit a BN GLM: Hℓ
i ,j ∼ BN(λk , ϕi ,j ,k), k := Condition(ℓ), ϕi ,j ,k : dispersion

parameter (+ moderated tests)

⇒ P = (pij)i ,j=1,...,p, i≤j
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Limitations...

▶ poor interpretability
▶ spatial structure of the matrix is neither used

First approach (diffHic): “clustering” of
contiguous significant p-values

But:

▶ no statistical guarantees

▶ badly handles false negative in positive
regions

Second approach [Neuvial et al., 2024]

But:

▶ only partially exploits the spatial
structure

▶ limited to TAD-like structures
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General objective

What do we start from?

What do we want to achieve?

1. provide statistical guarantees for any
(arbitrary) cluster

2. build clusters in a data-driven manner
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Why post-hoc inference?

H = {(i , j) : i , j = 1, . . . , p, i ≤ j}: hypotheses to test
H0 ⊂ H: true null hypotheses

Multiple testing correction:

▶ R: rejected hypotheses

▶ False positives: R∩H0

▶ False Discovery Rate: E
( |R∩H0|

|R|∨1
)
.

▶ But: Global FDR control ≠⇒ FDR
control in subset of pixels

Post-hoc inference
[Goeman and Solari, 2011]:

▶ For S ⊂ H, quantify
TDP(S) = 1− |S∩H0|

|S | ?

▶ post-hoc bound Vα : S ⊂ H → R st:

P(∀S ⊂ H,TDP(S) ≥ γα(S)) ≥ 1−α

with γα(S) = 1− Vα(S)
|S| .
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control in subset of pixels

Post-hoc inference
[Goeman and Solari, 2011]:

▶ For S ⊂ H, quantify
TDP(S) = 1− |S∩H0|

|S | ?

▶ post-hoc bound Vα : S ⊂ H → R st:

P(∀S ⊂ H,TDP(S) ≥ γα(S)) ≥ 1−α

with γα(S) = 1− Vα(S)
|S| .

Grenoble, France – 2026/01/30

SMPGD 2026 / Nathalie Vialaneix

p. 21



Why post-hoc inference?

H = {(i , j) : i , j = 1, . . . , p, i ≤ j}: hypotheses to test
H0 ⊂ H: true null hypotheses

Multiple testing correction:

▶ R: rejected hypotheses

▶ False positives: R∩H0

▶ False Discovery Rate: E
( |R∩H0|

|R|∨1
)
.

▶ But: Global FDR control ≠⇒ FDR
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A very general post-hoc bound

Under independence or PRDS [Benjamini and Yekutieli, 2001], Simes’ post hoc bound:

V Simes
α (S) = min

1≤ℓ≤|S |

[ ∑
(i ,j)∈S

1{Pij>
αℓ
m
} + ℓ− 1

]

is valid [Goeman and Solari, 2011].
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In short, proposed procedure

Condition 1

Condition 2

Data
(A)

i j

Pij

Pixel-based differential
analysis (e.g., diffHic)

P = (Pij)i, j=1...,p, i≤j

log FC = (log FCij)i, j=1...,p, i≤j

(B)

Clustering

C1

C2 C3

C = {C1, · · · , CK}

P

C

P, log FC

Post hoc inference
(C)

γα(C1)

γ α
(C

2
)

γα(C3)

γα(C) = {γα(C1), · · · , γα(CK)}

(D)

γα(C)

Cluster selection

E.g., threshold γα(Ck) > 10%
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Data driven clustering

Desirable properties of clusters:

▶ contiguous 2D regions in Hi-C map

▶ related to bin pair test results

▶ also accounts for direction of the change (p-value not sufficient)
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Data driven clustering

2D constrained hierarchical clustering
[Lebart, 1978, Grimm, 1987, Gordon, 1996, Thirion et al., 2014]

1. Neighboring constraint:

(i , j) and (i ′, j ′) neighbors ⇐⇒
|i − i ′|+ |j − j ′| = 1

2. Agglomerative clustering based on
▶ counts:

xij := (HC1,r1
ij ,HC1,r2

ij ,HC1,r3
ij ,HC2,r1

ij ,HC2,r2
ij ,HC2,r3

ij )

▶ diff: xij = (log FCij ,Pij)

xi−1,j

xi ,j−1

xij

xi ,j+1

xi+1,j
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Simulation study

Semi-simulated data from ENCODE data:

  

chr1 chr7 chr21

104
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104
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lic

ate
s

1Mb
resolution
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resolution

200Kb
resolution

1
2
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5

Tested methods:

▶ our ã: constrained 2D clustering + γα(S) cutoff

▶ diffHic clustering based on adjusted p-values + cluster-level FDR cutoff
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Results: PR curve
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Results: numerical performance of “best” results
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Results: numerical performance of “best” results
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Real dataset with external biological knowledge

Data from: [Zhang et al., 2021a] (CTCF depletion study)

image adapted from: [Fudenberg et al., 2016]
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Smoothing property of hicream

Minimal True Discovery Proportions from post hoc bounds

diffHic differential analysis adjusted p-values
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What to expect from CTCF depletion?

- -
-

- - + +
+ + +

++ - - -
- - -

- -

CTCF

CTCF depletion

CTCF

Differential region
with negative fold

change

Differential region
with positive fold change

Grenoble, France – 2026/01/30

SMPGD 2026 / Nathalie Vialaneix

p. 31



Results based on identified clusters

- -
-

- - + +
+ + +
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- - -
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CTCF
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CTCF

Differential region
with negative fold

change

Differential region
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Conclusion and perspectives

Take home messages

▶ Hi-C data are challenging
(hierarchical, spatial and counts)

▶ Post-hoc bound for genomics give
interesting exploratory results with
quantifiable statistical evidence (best
of two worlds)

What’s next?

▶ Define tighter bounds taking
advantage of the hierarchical structure

▶ Perform clustering and pixel-based
differential analysis together?

Thank you for your attention!
Questions?
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Soler-Vila, P., Cuscó, P., Farabella, I., Di Stefano, M., and Marti-Renon, M. A. (2020).

Grenoble, France – 2026/01/30

SMPGD 2026 / Nathalie Vialaneix

p. 33



Hierarchical chromatin organization detected by TADpole.
Nucleic Acids Research, 45(7):e39.
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