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) Outline

Biological motivation
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3D organization of DNA as a regulatory layer
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) DNA organization

Atthe simplest evel, chromatin
is a double-stranded helical DNA double helix
structure of DNA R
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) DNA organization

Atthe simplest evel, chromatin
is a double-stranded helical
structure of DNA
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) Impact on DNA functionning [Spielmann et al., 2018]
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) Hi-C experiment

Cut with
restriction
enzyme

Crosslink DNA
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) Hi-C data
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chromatin chromatin », crosslinking
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Images: adapted from [Li et al., 2014] (top) and courtesy of Sylvain Foissac + own work (bottom).
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) Hi-C data
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) Outline

Overview of contributions

INRAZ
Grenoble, France — 2026/01/30

o SMPGD 2026 / Nathalie Vialaneix

pP.



) Where Statistics comes into play

Data: (Hjj)ij, symmetric matrix where
entries are counts

H;;: proxy of the spatial proximity between
genomic position i and j (call “bins”; (i, )
is a “bin pair’ or a “pixel")
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) Where Statistics comes into play

Series of works on:

Data: (Hjj)ij, symmetric matrix where _ _
Hi-C data cIusterlng

entries are counts ,
g m? i
\‘ (’)4" > ENE )

“lNRA@&ma,W

H;;: proxy of the spatial proximity between
genomic position i and j (call “bins”; (i, )
is a “bin pair’ or a “pixel")

Statistical tests for Hi-C data
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Hi-C matrices and hierarchical clustering [Neuvial et al., 2023]
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) Clustering based on Hi-C matrices

Summary of the work performed in: Projet CNRS SCALES (with P. Neuvial & S.
Foissac). These INRAE/Inria Nathanaél Randriamihamison (also with M. Chavent)
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) Clustering based on Hi-C matrices

Summary of the work performed in: Projet CNRS SCALES (with P. Neuvial & S.
Foissac). These INRAE/Inria Nathanaél Randriamihamison (also with M. Chavent)

How is hierarchical clustering usually performed on Hi-C matrices?

[T W)

1- a bin — T T T T - 1
2. Euclidean distance 4+ HC
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) Clustering based on Hi-C matrices

Summary of the work performed in: Projet CNRS SCALES (with P. Neuvial & S.
Foissac). These INRAE/Inria Nathanaél Randriamihamison (also with M. Chavent)

Why is it not satisfactory?

1. Hi-C matrices are already distances!
2. sparse vs full representations
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) Clustering based on Hi-C matrices
Contributions
1. extend Ward's HC to similarity matrices as Hi-C with adjacency
constraint [Randriamihamison et al., 2021]

2. study of the mathematical properties
[Randriamihamison et al., 2021]

3. study of reversals in practice on Hi-C matrices
[Randriamihamison et al., 2021]

4. fast version using a band computation [Ambroise et al., 2019],
implemented in the R package adjclust
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) 2. Motivation example for tests in Hi-C data: Pig3D genome

project

INRAZ

& Pig3Dgenome

Project overview  Contact - Related projects ~

Overview

This project Investigates the spatial conformation of the chromatin In the nucleus of pig muscle cells during late development.

Pig fetuses Muscle Interaction
(Sus scrofa)  samples matrices

sampling  In situ Hi-C
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——
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Marti-Marimon et al, 2021

Pig3Dgenome

Differences
between
conditions?

[Marti-Marimon et al., 2018] (courtesy of Sylvain Foissac)
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) Outline

Differential analysis of Hi-C matrices
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) Standard methods for differential analysis of Hi-C data

Pixel-based methods

genomic interval

log FC
(bin palr)

bhAGaNG
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Structure-based methods

Boundary Difference Stripe Difference
N

Focal Contact Difference

[Gjoni et al., 2025]



) Structure-based methods

> target a specific structure

Boundary Difference
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) Structure-based methods

> target a specific structure

Boundary Difference Stripe Difference Focal Contact Difference
A

¢§'\\

» limited to this specific structure and sensitive to differences in methods for
structure-discovery [Forcato et al., 2017]
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) Pixel-based

methods [Jorge et al., 2025]
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) Most accurate method: diffHic [Lun and Smyth, 2015]
cyclic LOESS

1. normalize data with MA trend correction by

INRAZ
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) Most accurate method: diffHic [Lun and Smyth, 2015]

1. normalize data with MA trend correction by cyclic LOESS

2. fit a BN GLM: H,-eJ ~ BN(Ak, ¢ij k), k := Condition(£), ¢;«: dispersion
parameter (+ moderated tests)
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) Most accurate method: diffHic [Lun and Smyth, 2015]

1. normalize data with MA trend correction by cyclic LOESS

2. fit a BN GLM: HfJ ~ BN(Ak, ¢ij k), k := Condition(£), ¢;«: dispersion
parameter (+ moderated tests)

= P = (pj)ij=1,.p i<
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) Limitations...

» poor interpretability
» spatial structure of the matrix is neither used
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) Limitations...

» poor interpretability
» spatial structure of the matrix is neither used

First approach (diffHic): “clustering” of
contiguous significant p-values

But:
» no statistical guarantees

» badly handles false negative in positive
regions

INRAZ
Grenoble, France — 2026,/01/30

£ SMPGD 2026 / Nathalie Vialaneix

.18



) Limitations...

» poor interpretability

» spatial structure of the matrix is neither used

First approach (diffHic): “clustering” of
contiguous significant p-values

But:
» no statistical guarantees

» badly handles false negative in positive
regions
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Second approach [Neuvial et al., 2024]

But:

P only partially exploits the spatial
structure

» limited to TAD-like structures
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) Outline

Post-hoc inference for interpretable Hi-C tests
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) General objective

What do we start from?

p-values
0.992
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General objective

What do we start from?
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p-values
0.992

What do we want to achieve?

1. provide statistical guarantees for any
(arbitrary) cluster

p-value
0.992

0721
05
0319
047
0.049

2. build clusters in a data-driven manner



) Why post-hoc inference?

H=A{(ij): i,j=1,...,p, i <j}: hypotheses to test
Ho C H: true null hypotheses

Multiple testing correction:

> R: rejected hypotheses

» False positives: R N Ho

|RNHo| )

» False Discovery Rate: ]E( RV
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) Why post-hoc inference?

H=A{(ij): i,j=1,...,p, i <j}: hypotheses to test
Ho C H: true null hypotheses

Multiple testing correction:

> R: rejected hypotheses

» False positives: R N Ho

» False Discovery Rate: ]E('Rm{o').

RIV1

» But: Global FDR control =& FDR
control in subset of pixels
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) Why post-hoc inference?

H=A{(,)): i,j=1,...
Ho C H: true null hypotheses

Multiple testing correction:

> R: rejected hypotheses

» False positives: R N Ho

» False Discovery Rate: ]E('Rm{o').

RIV1

» But: Global FDR control =& FDR
control in subset of pixels
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,p, i <j}: hypotheses to test

Post-hoc inference
[Goeman and Solari, 2011]:

> For § C H, quantify

_ _ |SmH0‘?
TDP(S) = 1 — gl

» post-hoc bound V, : S C H — R st:

P
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) Why post-hoc inference?

H=A(,j): i,j=1,...,p, i <j}: hypotheses to test

Ho C H: true null hypotheses

Multiple testing correction:

» R: rejected hypotheses

> False positives: R N Ho

[RNH,|

» False Discovery Rate: ]E( RV )

» But: Global FDR control =& FDR
control in subset of pixels

INRAZ
Grenoble, France — 2026/01/30

&) £ SMPGD 2026 / Nathalie Vialaneix

Post-hoc inference
[Goeman and Solari, 2011]:

» For § C H, quantify

— 1 _ 150Hol,
TDP(S) = 1 5kl

» post-hoc bound V, : S C H — R st:

P(VS C H,|SNHo| < Vu(S)) > 1 -«
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) Why post-hoc inference?

H=A{(ij): i,j=1,...,p, i <j}: hypotheses to test
Ho C H: true null hypotheses
Post-hoc inference

Multiple testing correction: )
[Goeman and Solari, 2011]:

> R: rejected hypotheses
> For § C H, quantify

_ [SNHo|
> False positives: R N Ho TDP(S) =1~ IS =7
> False Discovery Rate: E(|7|%m|?v{f|) » post-hoc bound V,, : § C H — R st:

P(VS € H, TDP(S) > 1.(5) > 1—a

» But: Global FDR control =& FDR

i i . Va(S
control in subset of pixels with a(S) =1 — Is(| )
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) A very general post-hoc bound

Under independence or PRDS [Benjamini and Yekutieli, 2001], Simes’ post hoc bound:

Simes _ . _
VaS) = 15‘3?5[ Z Lpoary #6071
(iJ)es

is valid [Goeman and Solari, 2011].
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) In short, proposed procedure

[ Data |

Condition 1

Condition 2

dddddd

] Pixel-based differential
analysis (e.g., diffHic)

P =(Pij)ij=1.p i<
log FC = (log FCy;)i j=1._p, i<j

P.logFC

) .
Clustering

/5 7\

C={Cy, - ,Cx}
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Cluster selection

E.g., threshold ~,(Cy) > 10%
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) Data driven clustering

Desirable properties of clusters:
» contiguous 2D regions in Hi-C map
> related to bin pair test results

» also accounts for direction of the change (p-value not sufficient)

INRAZ
Grenoble, France — 2026/01/30

£ sSMPGD 2026 / Nathalie Vialaneix

P

24



) Data driven clustering

2D constrained hierarchical clustering
[Lebart, 1978, Grimm, 1987, Gordon, 1996, Thirion et al., 2014]
1. Neighboring constraint:
(7,j) and (i, /) neighbors <=
li=i+l-Jjl=1
2. Agglomerative clustering based on
> counts:

o C,n G, G, 1 yGun G, 1yC,rs
Xjj = (Hij ’Hij vHij ?Hij ?Hij 7Hij )

> diff: Xij = (|Og FC,‘_,‘7 P,_,)
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) Simulation study

Semi-simulated data from ENCODE data:

chrl chr21
41
¢
: lzf
1Mb

resolution !

For each chromosome,
resolution and tool

200Kkb
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) Simulation study

Semi- simulated data from ENCODE data:

chr? chr21
- ﬂ
1Mb
resolution ;

500Kb E H H
vesolullon

'?": wl L

For each chromosome, Hi setting
resolution and tool

{1, 2} vs. {3", 4’}

resolution

Tested methods:
> our 9: constrained 2D clustering + v, (S) cutoff

> diffHic clustering based on adjusted p-values + cluster-level FDR cutoff
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Results: P

R curve
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Method

- diffHic clustering
~~ hicream counts
~= hicream diff
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Results: numerical performance of “best” results

diffHic clustering
Cluster- Nb. of | Median clus-
Chr. | Res. level FDR 1 q
T es
[1 2000 | 040 14198 3
1 500 kb 0.05 3037 4
1 1 Mb 0.05 2634 1
7 200 kb 0.45 3994 4
7 500 kb 0.05 1131 4
7 1 Mb 0.05 1109 1
21 200 kb 0.25 314 5
21 500 kb 0.05 151 2
( 21 1 Mb 0.10 100 1
INRAZ
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hicream diff

0.014 120 36
0.086 72 70

0.2 76 10.5
0.005 76 33
0.258 153 10
0.698 42 11
0.291 21 34
0.083 19 10

0.2 7 12
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Results: numerical performance of “best” results

hicream diff

TDP cl:lul;:: Metdlan clus-
0.014 120 36
0.086 72 70

0.2 76 10.5
0.005 76 33
0.258 153 10
0.698 42 11
0.291 21 34
0.083 19 10

0.2 7 12

diffHic clusteriny
Cluster- Nb. of| | Median clus-
Chr. | Res. ] | FDR 1 +
[1 2000 | 040 14198 3
1 500 kb 0.05 3037 4
1 1 Mb 0.05 2634 1
7 200 kb 0.45 3994 4
7 500 kb 0.05 1131 4
7 1 Mb 0.05 1109 1
21 200 kb 0.25 314 5
21 500 kb 0.05 151 2
[ 21 1 Mb 0.10 100 1
INRAZ
Grenoble, France — 2026/01/30

) SMPGD 2026 / Nathalie Vialaneix

.28



) Real dataset with external biological knowledge

Data from: [Zhang et al., 2021a] (CTCF depletion study)

TAD organization

@ L
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image adapted from: [Fudenberg et al., 2016] "
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) Smoothing property of hicream

Minimal True Discovery Proportions from post hoc bounds
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) What to expect from CTCF depletion?

CTCF depletion Differential region
with positive fold change

Differential region
with negative fold
change

TAD organization

CTCF CTCF

8
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) Results based on identified clusters

Positive fold change Negative fold change

Coverage (average number of ctcf/kb)

Coverage (average number of ctcf/kb)

L A A R O O A A § 8§ gz R8s R8 g g fg

Relative position with respect to the cluster boundaries (flanks:bp, inside: % of length) Relative position with respect to the cluster boundaries (flanks:bp, inside: % of length)

‘CTCF depletion Differential region
with positive fold change

Differential region
with negative fold
change

CTCF CTCF
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) Conclusion and perspectives

Take home messages

» Hi-C data are challenging
(hierarchical, spatial and counts)

» Post-hoc bound for genomics give
interesting exploratory results with
quantifiable statistical evidence (best
of two worlds)
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) Conclusion and perspectives

Take home messages

» Hi-C data are challenging
(hierarchical, spatial and counts)

» Post-hoc bound for genomics give
interesting exploratory results with
quantifiable statistical evidence (best
of two worlds)
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What's next?

» Define tighter bounds taking
advantage of the hierarchical structure

» Perform clustering and pixel-based
differential analysis together?

33



) Conclusion and perspectives

Take home messages

» Hi-C data are challenging What's next?
(hierarchical, spatial and counts) » Define tighter bounds taking

» Post-hoc bound for genomics give advantage of the hierarchical structure

interesting exploratory results with » Perform clustering and pixel-based
quantifiable statistical evidence (best differential analysis together?
of two worlds)

Thank you for your attention!
Questions?
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